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ABSTRACT OF THE DISSERTATION 

 

Latent Transition Analysis:  

Modeling Extensions and an Application to Peer Victimization 

 

by 

Karen Lynn Nylund 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2007 

Professor Bengt Muthén, Chair 
 

 

Latent transition analysis (LTA) is a type of longitudinal analysis that explores change 

in latent classes of individuals over time. Applications of LTA can be found in a range of 

social science disciplines that address a variety of topics such as modeling progression 

through drug use and abuse stages, studying children’s drawing development, and exploring 

patterns of criminal behavior. LTA builds on two modeling traditions: latent class analysis 

(LCA) and autoregressive modeling, specifically Markov models. Latent class analysis, a 

latent variable mixture model, is used as a measurement model in LTA to identify unique 

classes (i.e., groups or statuses) at each point in the analysis. The autoregressive component 

describes transitions among the classes that occur over time. LTA simultaneously defines the 

classes and models individual-level change among them that occur over time. 

This dissertation describes an advanced application of LTA that highlights several 

modeling extensions not common in other applications. These extensions include the use of 
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covariates that allow for time-specific relationships with outcomes, a higher-order effect that 

tests if there is a lasting impact of early classification, a latent covariate in the form of a 

mover-stayer variable as a way to describe heterogeneity in development, and distal 

outcomes predicted by developmental patterns. 

One of the aims of this dissertation is to present the LTA model and its extensions 

in a pedagogical way, illustrating how one can specify the model, which research questions 

the model can address, and how researchers can interpret the model’s results. LTA is a type 

of structural equation model (SEM) comprised of both a measurement and structural model. 

This dissertation introduces five model-building steps, providing practical guidelines for how 

to specify the model. The steps begin with descriptive cross-sectional explorations of the 

data, then selecting a measurement model for each time point, eventually building up to a 

final LTA model that integrates results and insights gained from the careful application of 

the steps.  

This dissertation applies the analysis steps to a dataset aimed at studying change in 

the peer victimization experiences of approximately 1,300 urban, public-school students 

across the three middle school years (grades 6, 7, and 8). The systematic application of the 

steps involves a discussion of modeling results that highlights ways in which each step’s 

results contribute to the understanding of students’ peer victimization experiences in middle 

school. The analyses yielded three victimization classes based on degree: victimized, 

sometimes-victimized, or nonvictimized. Results indicated that when students transitioned 

between victimization classes, they most likely moved from a more victimized class to a less 

victimized one. Further, results indicated that compared to students who do not experience 

any sort of victimization, victimized students feel less safe at school, more socially anxious, 
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and more depressed during certain middle school years. Students who were in the victimized 

class in grade 8 reported more physical health problems and more social worries once in 

high school than students who were in the other victimization groups. Together these 

findings can help teachers and researchers understand the peer victimization experiences of 

middle school students and may help in developing programs aimed at reducing the effects 

for students who are victimized. 



 1 

Chapter 1: Introduction 

In the past few decades, longitudinal methodology has become a more commonly 

used tool for researchers focused on understanding and describing change. This increase in 

use is likely the result of more longitudinal data being collected as well as the development of 

more methodologies that can be used to analyze such data. Publications that demonstrate 

novel applications of longitudinal methods have helped to make these methods more 

familiar and accessible to researchers doing applied work. In addition, statistical software 

packages for estimating longitudinal models have become more flexible and user-friendly, 

enabling applied researchers to more easily apply these methods to their data. 

There is a variety of models that are available for analyzing longitudinal data and the 

choice of which model to use may be far from straightforward. Many of the longitudinal 

methods model change in slightly different, but not opposing, ways. Rather, there are 

different approaches that address different sets of research questions, and these approaches 

can be modified or customized to suit particular applications. Thus, it is often up to the 

researcher to decide which of the available longitudinal methods is most appropriate for a 

given set of research questions and datasets. One of the goals of this dissertation is to 

describe and illustrate one type of longitudinal method, latent transition analysis (LTA), in a 

way that both demonstrates which research questions the model can address and provides 

practical tools researchers can use in applying the model. 

Dissertation Goals and Contributions 

This dissertation has three primary, complementary goals. The first is to introduce 

LTA and illustrate novel modeling extensions. By exploring time-to-time transitions in 
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discrete latent outcomes, the LTA model takes a different approach to describing change 

than the more commonly applied growth models. The introduction begins by placing LTA 

in a broader modeling context, which includes a comparison to other longitudinal methods. 

Modeling extensions include the use of covariates that allow for time-specific relationships, 

higher-order effects, a latent covariate in the form of a mover-stayer variable, and distal 

outcomes predicted by developmental patterns. 

The second goal of this dissertation is to use the LTA model to explore unanswered 

research questions about the development of self-reported peer victimization using a 

longitudinal sample of middle school students. This application of LTA includes a way to 

empirically derive groups of students based on their victimization experiences and then 

models the development of these experiences throughout middle school. Important 

covariates of victimization are included in the model and are used to study how the 

relationships of these variables with victimization change over time. The lasting impacts of 

early victimization experiences are investigated using a higher-order effect, and middle 

school victimization experiences are related to high school outcomes (i.e., distal outcomes). 

The third goal of this dissertation is to develop a pedagogical presentation of LTA 

models and their applications in a real data setting. The use of the analysis steps and their 

careful application to the peer victimization data provide a more in-depth look at the 

modeling process than is common in other LTA applications. Practical considerations 

involved in specifying an LTA model are discussed, including how to decide on an 

appropriate measurement model and how to interpret results. Further, the syntax for all 

models considered in this dissertation as implemented in the Mplus software (Muthén & 

Muthén, 1998-2007) is included in the appendices. The proposed analysis steps and their 
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discussions highlight the ways in which the method informs both our understanding of peer 

victimization as well as how our understanding of peer victimization informs the application 

of the method. 

The goals of this dissertation map onto three unique contributions: 

 Contribution 1: To provide a pedagogical introduction of the LTA models and 

modeling extensions. These extensions include exploring an extensive set of 

measurement models, the inclusion of continuous and discrete covariates and 

predictors including time-varying covariates with time-varying effects, a higher-

order transition effect, a second-order mover-stayer variable, and differences in 

distal outcomes that vary by developmental trajectories. 

 Contribution 2: To provide substantive contributions to the understanding of 

self-reported victimization, including (a) an empirically-based method of 

classifying victimization experiences and (b) longitudinal data analysis results that 

describe individual change in victimization classification throughout middle 

school. 

 Contribution 3: To provide insight into the application of LTA to data using 

analysis steps that highlight the ways the model is specified and interpreted, 

decisions made in the application, and discussions of the intermediate and final 

modeling results. Concrete examples of how to specify the models are provided, 

including the syntax for Mplus, the statistical software used in this application. 

The contributions of this dissertation are separated into three chapters. Chapter 2 

introduces LTA and places the model in the broader context of other longitudinal models. 
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This includes describing how the choice of method is based in part on the nature of their 

outcomes. Chapter 2 compares models appropriate for use with continuous versus 

categorical variable outcomes, as well as models for observed versus latent outcomes, and 

the intersection of the two (e.g., modeling change in continuous observed outcomes or latent 

categorical outcomes). A general modeling description presented in Chapter 2 helps to 

position the LTA among other longitudinal models. The second chapter ends with the list of 

model building steps that can be used to guide the specification of a series of LTA models.   

Chapter 3 applies the analysis steps presented in Chapter 2 to the peer victimization 

dataset. Beginning with descriptive statistics, the analysis steps are used to build a 

longitudinal model that includes many modeling extensions. For each of the steps, a 

discussion of the results is included that highlights the ways in which information gained at 

each step can be used in subsequent steps. As a result of the model building process, some 

intermediate modeling results that are discussed in this chapter may not be directly integrated 

into the final model. The presentation of results using this orientation provides insight into 

the decisions involved in the process that one may go through when conducting longitudinal 

research. Consequently, the third chapter, entitled “Methods and Results,” is non-traditional 

in the sense that it systematically guides the reader through the analysis steps while 

simultaneously discussing results.   

As the goals of this dissertation are overlapping, Chapter 4 includes the discussion of 

several sets of results. The concluding chapter begins with a discussion of the modeling 

results and the how they contribute to our understanding of peer victimization. The chapter 

also includes discussions about the modeling process employed and the ways it facilitated a 

careful application of the method to study peer victimization. Also included is a discussion 
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of the implications and limitations of the study. Chapter 4 closes with a discussion of 

modeling extensions and ideas for future research.   

The remainder of Chapter 1 focuses on the study of peer victimization, the data used 

in this study, and the model estimation details. First is an introduction to the study of peer 

victimization in middle school and why it is an important construct to study. The next 

section highlights the ways in which the LTA model directly addresses unanswered research 

questions about the way victimization is measured and about students’ development through 

middle school. This is followed by a section that describes the specific dataset, procedures, 

and measures used in this dissertation. The chapter ends with a summary of modeling and 

estimation details.  

The Study of Peer Victimization 

It is well established in the literature that peer victimization is associated with a host 

of adjustment difficulties during childhood and adolescence. The difficulties range from 

psychological maladjustment and peer rejection to physical health problems (e.g., physical 

complaints, frequent nurse visits, school absences) and academic problems such as poor 

school performance (Juvonen & Graham, 2001). Nevertheless, important gaps remain in our 

understanding of students’ peer victimization experiences. For example, there are 

inconsistencies in the criteria researchers use to identify victims and nonvictims (Ladd & 

Kochenderfer-Ladd, 2002). 

Classifying students into groups is a useful technique for understanding individual 

differences in development (Magnusson & Cairns, 1996) and is employed by peer-relations 

researchers interested in subgroups of aggressors and victims (Schwartz, 2000). When 
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classifying students into different victimization risk groups—for example, to predict 

maladjustment—it is important that the groups accurately reflect the key differences among 

students. However, some studies classify students into groups based on victimization 

severity or frequency, while others seek to understand differences in risk based on 

experiencing different forms of peer victimization. Without use of the same criteria, it is 

difficult to establish consistent subgroup differences.  

Victim Groups Based on Severity 

Studies that specify victimization groups based on severity typically rely on standard 

deviations from the sample mean to classify students into groups, such as victims and 

nonvictims (e.g., Graham, Bellmore, & Mize, 2006; Graham & Juvonen, 1998; Juvonen, 

Graham, & Schuster, 2003; Olweus, 1993; Perry, Kusel, & Perry, 1988; Schwartz, 2000). This 

method often utilizes self-ratings (e.g., frequency of victimization experiences) and peer 

nominations (e.g., strength of victim reputation among classmates). While this classification 

approach yields valid associations between extreme-group membership and social-

psychological functioning, it has several potential problems. First, there are no clear 

guidelines regarding where to place cut-off scores or how many groups to create, regardless 

of whether raw- or z - scores are used. Second, when standardized cut-offs are used (i.e., z - 

scores), a student’s classification becomes dependent on both the student’s own 

victimization score as well as variations in victimization among peers. This problem is 

magnified when comparing victimization groups across time.  



 7 

Victim Groups Based on Form of Victimization 

Another hotly contested and yet-to-be-resolved issue in the study of peer-directed 

aggression is that of the form(s) that it takes (see, Archer & Coyne, 2005; Little, Jones, 

Henrich, & Hawley, 2003). There appear to be different forms of peer victimization (cf. 

physical, verbal, relational), and some researchers believe it is important to distinguish 

between victims who experience physical harassment and those who are targets of more 

covert intimidation tactics, such as social exclusion (see Smith, Cowie, Olafsson, & 

Liefooghe, 2002).   

Classification of victims by types of experience is questionable in light of empirical 

evidence showing that different forms of victimization are highly correlated and that many 

targets are victimized in multiple ways. For example, Bellmore and Cillessen (2006) reported 

alphas above .90 of middle school students’ composite peer-reported victimization scores 

based on general (e.g., “picked on”), physical, and relational victimization nomination items. 

High levels of intercorrelation suggest that children who experience one type of 

victimization also experience the other types of victimization measured in these studies.   

The present study used a person-centered latent variable approach to address the 

debate concerning victimization type and to explore the developmental course of peer 

victimization during adolescence. As noted above, researchers interested in examining 

differences between victim types have commonly classified children into groups based on 

cut-off scores. Despite its utility, this method imposes differences between children that may 

not be meaningful or may result in classification errors including false positives and false 

negatives. Further, these differences may dampen the ability to predict differences in 

psychosocial adjustment. In addition to these measurement problems, inaccurate cut points 
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also have important practical implications for estimating the prevalence of victimization and 

for successfully designing and implementing interventions (Solberg & Olweus, 2003).   

Developmental Considerations in Determining Victim Groups 

Correctly classifying students into victimization groups requires knowledge about the 

developmental course of peer victimization across childhood and adolescence. Variations in 

the prevalence and/or forms of victimization experienced at different ages or grades may 

exist as a function of the individual or contextual characteristics that are present at different 

points in development (Smith, Madsen, & Moody, 1999). For several reasons, the middle 

school years promise to be an important period during which to study the developmental 

course of peer victimization. First, research suggests that during adolescence victims of peer 

harassment are among the most rejected students in their peer group (Boivin, Hymel, & 

Hodges, 2001). Second, several recent, large, nationally-representative studies have found 

that, at least from a cross-sectional perspective, the frequency and prevalence of peer 

victimization peaks during the early middle school years (Kaufman et al., 1999; Nansel et al., 

2001). That is, the percentage of students who report being victimized at least occasionally 

by their peers is highest during sixth grade, when students are typically in their first year of 

middle school, and decreases somewhat steadily during the later middle school years.  

These cross-sectional data suggest that for some students, peer victimization 

experiences may be largely confined to the early middle school years (Nansel et al., 2001), 

though this remains an empirical question to be answered with longitudinal data. Research 

pointing to this peak has been mainly cross-sectional (Salmivalli, 2002). Less is known about 

what happens longitudinally, and it is likely that peer victimization does not decrease for all 
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youth. At the same time, while a host of research studies have identified antecedents, 

covariates, and consequences of peer victimization (Hawker & Boulton, 2000; Juvonen & 

Graham, 2001), less is known about the covariates (especially time-varying covariates) that 

might predict victimization over time. There is also limited research about the extended 

consequences associated with different patterns of peer victimization (cf., chronically 

victimized, consistently nonvictimized) (Juvonen, Nishina, & Graham, 2000).  

The Present Study of Peer Victimization 

This dissertation used LTA to model change in student’s self-reported peer 

victimization in a large sample of middle school students across the spring of sixth, seventh, 

and eighth grades. The first task was to use a person-centered latent variable approach to 

address the debate concerning victimization type. Once the classification of students into 

victimization classes (i.e., groups) was settled, the next task was to explore the developmental 

course of peer victimization during adolescence  

The latent class analysis (LCA) empirically identified groups of students based on 

their victimization experiences. In the context of LCA, these groups are referred to as 

classes. Once the classes of students were identified and validated, LTA was used to study 

transitions and transition patterns across victimization classes throughout the middle school 

years. This approach enables the exploration of several important questions about the 

development of victimization and how victimization relates to key psychosocial variables 

such as depressive symptoms, social anxiety, perceived school safety, physical symptoms, 

and social worries. While several cross-sectional studies suggest that students experience the 

most victimization early in middle school (Nansel et al., 2001), this research assessed this 
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claim longitudinally. Further, this application examines the question of whether students’ 

earlier victimization classification predicted later victimization (e.g., are there lasting effects 

of sixth grade victimization status on eighth grade status?). Lastly, to explore whether the 

timing of one’s victim classification is important, the current study examined whether 

psychological maladjustment was differentially associated with victim class membership in 

grades six, seven, and eight.  

In sum, LTA is particularly relevant to study the development of peer victimization 

through middle school for two reasons. First, it uses a person-centered model-based 

approach to identify classes of students based on their victimization experiences. Thus, LTA 

does not rely on external criterion or cut points to derive the victim classes. Second, LTA 

models the developmental patterns of students’ peer victimization classifications over time, 

addressing research questions about change and the extent to which external variables are 

related to change. 

Data Description and Method 

Participants  

The participants in this study come from a larger longitudinal study currently taking 

place at the University of California, Los Angeles (UCLA). Participating students attended 

one of 11 public middle schools located in predominantly low socioeconomic status (SES) 

neighborhoods in the greater Los Angeles, California area. The overall sample was ethnically 

diverse (44% Latino, 26% African American, 10% Asian, 9% Caucasian, and 11% 

multiethnic). The exact sample size for the analyses varied across each wave of data 

collection (due to attendance, attrition, response bias, etc.) from sixth to eighth grade. 
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Specifically, there were 1,900 (54% girls), 1,714 (55% girls), and 1,564 (56% girls) 

participants in the spring of sixth, seventh, and eighth grades, respectively. These sample 

sizes reflect participation rates that ranged between 99% and 75% for Waves 1 and 6, 

respectively. Students belonged to one of two cohorts: Cohort 1 was recruited in sixth grade 

in 2000 and Cohort 2 was recruited in sixth grade in 2001.  

Procedure  

Students were initially recruited from their homeroom during the fall of sixth grade, 

and both written parental consent and student assent were obtained. Seventy-five percent of 

parents who were initially contacted returned completed consent forms. Of these parents, 

89% provided written consent for their child to participate. At each wave, as part of a larger 

survey protocol conducted within a single classroom period, students completed self-report 

measures that included the peer victimization measure among other measures of social, 

psychological, and academic functioning. The survey was administered to students once each 

semester (i.e., every fall and spring) throughout their entire three-year tenure in middle 

school. During sixth grade, the school received $5 for every completed survey, to benefit the 

classroom (for the purchase of supplies, for example). In subsequent years, individual 

students received $5 each time they completed a survey.   

Measure of Victimization   

At each time point, students completed a six-item modified version of Neary and 

Joseph’s (1994) Peer Victimization Scale. This measure was designed to be embedded in 

Harter’s (1987) Self-Perception Profile for Children to reduce social desirability biases. Each 

item in the scale describes two types of individuals: “[s]ome kids are not called bad names by 

other kids, BUT, other kids are often called bad names by other kids.” For each item, 
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students were asked to circle which type of individual was most like them and indicate 

whether it was “sort of true for me” or “really true for me.” Doing this created a 4-point 

scale for each item, with higher scores indicating higher levels of peer victimization. The 

original scale had two items that reflect general victimization (“picked on” and “laughed at”), 

one item that assesses verbal victimization (“called bad names”), and another that assesses 

physical victimization (“hit and pushed around”). Additional items reflected relational 

victimization (“gossiped about”) and property damage/theft (“gets their things taken or 

messed up”), another form of victimization relevant to large urban schools.   

Because the interest is in whether students experience victimization, these items were 

dichotomized such that 0 reflects any not-endorsed item (i.e., a rating of 1 or 2; reflecting a 

child who does not report getting picked on), and 1 reflects an endorsed item (i.e., a rating of 

3 or 4; where the child does report such a problem). The dichotomized responses made 

sense conceptually because the scale required each student to first decide which hypothetical 

individual he or she felt most similar to. Thus, these items measured whether the student 

endorsed each of the six items rather than the degree of endorsement for each one. Also, the 

dichotomous items made practical sense, keeping in mind the extensive longitudinal analysis 

for which they will be utilized.   

In preliminary cross-sectional analyses, a unique response pattern emerged as a 

separate class in LCA analyses. Upon further investigation, this very small class appeared to 

represent a response bias class of students who responded on the same serial position on the 

page, regardless of whether the item was worded in a negative or positive direction (i.e., 

reverse-coded). Students who showed evidence of such bias were removed from the analyses 
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for that wave. Across the waves of data collection, this resulted in removing 1.3% (n = 31) 

to 2.9% (n = 68) of the sample from a given wave. 

Covariates and Distal Outcomes 

Demographic Characteristics 

Students self-reported gender on the questionnaire. They also self-reported 

race/ethnicity, choosing from 1 of 10 ethnic categories or providing an open-ended 

description of their race/ethnicity. Responses were aggregated into five primary racial/ethnic 

categories: Latina/o, African American, Asian, Caucasian, and biracial/multiethnic. 

Preliminary analyses revealed that 40% of students changed their race/ethnicity 

identification at least once in their self-reported middle school surveys (Nishina, Bellmore, 

Witkow, & Nylund, 2006). For students whose self-reported ethnicity changed across time 

points, categorization into one of the five aggregate racial/ethnic groups was determined by 

identifying which racial/ethnic group the student identified in the majority of the available 

survey waves (sixth through tenth grades). The five ethnic group variables were included in 

the model using dummy coding, where the reference group was the Caucasian group. 

Perceived school safety. Students’ perceptions of school safety were measured using a 10-

item subscale of the Effective School Battery (Gottfredson, 1984). Items tapped general 

perceptions of safety at school and on the way to school (e.g., “How often do you feel safe 

while in your school building?”) and were rated from (never), to 5 (always). A mean of the 

items was calculated, such that higher scores reflect stronger perceptions of school safety. 

Alpha coefficients for this sample ranged from .73 to .83 across waves. 
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Depressive symptoms were measured using the 10-item short form of the Children’s 

Depression Inventory (Kovacs, 1992). Using this scale, students were presented with three 

sentences that described, “how kids might feel” and asked to indicate which sentence best 

described how they have been feeling in the past two weeks. For each item, the student 

could mark 0, 1, or 2. The ratings represented self-evaluations, as follows: 0 (I do most things 

okay), 1 (I do many things wrong), and 2 (I do everything wrong). The mean of the 10 items was used 

in the analysis, with higher scores indicating a greater prevalence of depressive symptoms. 

Alpha coefficients ranged from .79 to .85 across waves. 

Social anxiety was measured using 9 of 12 items from the Fear of Negative Evaluation 

and Social Avoidance and Distress scales—general subscales of the Social Anxiety Scale for 

Adolescents (La Greca & Lopez, 1998). Three items from the Fear of Engagement 

Evaluation subscale that could be construed as peer harassment were removed to avoid 

construct overlap. Items were measured on a 5-point scale ranging from 1 (never true) to 5 

(always true). Examples include: “I worry about what others think of me,” and “I’m quiet 

when I’m with a group of people,” for fear of negative evaluation and social avoidance and 

distress-general, respectively. A mean of the nine items was used in the analysis, where 

higher mean scores indicated higher levels of self-reported social anxiety. Alpha coefficients 

ranged from .80 to .82 across waves 

High school physical symptoms were assessed in the fall of grade 9 with a list of 12 

symptoms (modified from Resnick et al., 1997; Udry & Bearman, 1998), for example 

“headaches,” and “sore throat/coughs.” Students indicated how often they had experienced 

each symptom in the previous two weeks (1 = not at all; 4 = almost every day), with higher 

means reflecting more physical symptoms (α =.81 for this sample). 
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High school social worries were measured using a modified four-item version of the High 

School Performance Scale (Nukulkij, Whitcomb, Bellmore, & Cillessen, 1999). Rated on a 5-

point scale (1 = never; 5 = all the time), items tapped students’ worries about their high school 

social experiences (for example, “Now that I am in high school, I worry that I won’t have 

any friends”). Higher mean scores reflect more worries about social problems in school (α 

=.85 for this sample).  

Issues of Attrition 

The larger longitudinal study from which these data are drawn initially recruited 

approximately 2,300 sixth-grade students. In the spring of eighth grade, 75% of the initial 

sample (n = 1,704) remained in the study. Since the average student mobility rate for the 11 

participating schools was quite high (41%), this 75% retention rate is satisfactory. The 

retention rate is also comparable to other longitudinal studies with similar urban youth 

samples (Roeser & Eccles, 1998; Seidman et al., 1994). In addition, t-tests comparing 

retained students versus students lost through attrition on sixth grade variables included in 

the current study revealed that retained students had higher initial grade point averages but 

otherwise did not differ in other academic, behavioral, or school climate variables from 

attrited students. The larger longitudinal study continued to follow students as they 

transitioned from the 11 middle schools to over 100 high schools in the greater Los Angeles 

area. The retention rate from eighth to ninth grade was greater than 80%. 

Model Estimation 

All of the models presented in this dissertation were analyzed using the statistical 

software Mplus 4.2 (Muthén & Muthén, 1998-2007). Estimating LTA models in Mplus 
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allows for missing data on the measured outcomes using Full Information Maximum 

Likelihood (FIML) estimation (for more on FIML see, for example, Enders & Bandalos, 

2001). Maximum likelihood estimates were obtained via the Expectation Maximization (EM) 

algorithm (Dempster, Laird, & Rubin, 1977), an iterative estimation scheme that can obtain 

maximum likelihood estimates for incomplete data, where latent variables are incomplete for 

all individuals in the sample. As a result, in both the preliminary cross-sectional and 

longitudinal models used in this dissertation, students were only eliminated from the analysis 

if they were missing on all observed outcomes used in the analysis (e.g., if in the longitudinal 

analysis a student was absent for each Spring semester) or if they were missing on the 

covariates. Multiple imputation techniques, which replace missing outcome and covariate 

information to preserve sample size, are available but not necessary for this study because 

there was not an excessive amount of missing data.   

The modeling results account for the non-independence of students nested within 

schools by adjusting to the standard errors using a sandwich estimator.1 Students came from 

11 different schools, which are too few to explicitly model the nested nature of the data (e.g., 

using multilevel modeling). They were further nested within classrooms, but the longitudinal 

nature of the study meant that students moved among classrooms throughout middle 

school. As a result, there is not a single classroom variable that can be used to cluster at that 

level.   

  

 

                                                 
1 In Mplus, this adjustment is specified using “type = complex,” where the user must name the clustering 
variable. In this application the clustering variable was a student’s middle school. 
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Chapter 2: The Latent Transition Analysis Model and Extensions 

This chapter introduces the latent transition analysis (LTA) model, the longitudinal 

model that is the focus of this dissertation. LTA is a type of autoregressive model that can 

describe change in latent categorical variables. This chapter presents the LTA model in a 

broader longitudinal modeling context to facilitate comparisons with other common models. 

Further, this chapter includes details related to the specification of the LTA model. The 

chapter concludes by presenting a series of model-building steps that researchers can use 

when applying LTA to a dataset.  

Many applications of longitudinal models can describe changes in directly observable 

outcomes. That is, the outcome of interest is directly measured over time, and the model 

summarizes and describes changes that occur. The LTA model describes change in 

outcomes where the outcomes are not directly observed. That is, the outcomes in LTA 

models are latent and are indicated by a set of observed variables. Further, the outcome for 

LTA is a categorical variable. Modeling change in latent variable outcomes may not be 

familiar to some researchers. Even further, modeling change in a categorical outcome, latent 

or observed, may also be unfamiliar to researchers. 

This chapter introduces the modeling ideas and begins by describing models that 

explore change in observed outcomes, eventually showing how the same modeling ideas can 

be used to study change in latent variables. Two types of models serve as examples: a growth 

curve model and an autoregressive model. A brief description of each model type is included 

that highlights the ways in which the models can be used to describe change, considering 

both continuous and categorical outcomes. This section then shows how both growth and 
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autoregressive models can be used to describe change using both observed outcomes and 

latent variables.  

The descriptions of the models in this chapter are not representative of all 

longitudinal models, but highlight important features of each model for the sake of 

comparison. Many technical details are omitted because the focus of this chapter is on 

general descriptions. For more information on growth curve modeling see, for example, 

Raudenbush and Bryk (2002), Duncan, Duncan, Strycker, Li, and Albert (1999), and Singer 

and Willet (2004). Descriptions and applications of longitudinal models with categorical 

outcomes can be found in Fitzmaurice, Laird, and Ware (2004), Molenberghs and Verbeke 

(2005), and Hedeker and Gibbons (1994), among others. For more on applied autoregressive 

or Markov models see Böckenholt (2005), Collins and Sayer (2001), Mooijaart (1998), and 

Van de Pol and Langeheine (1990). 

Longitudinal Models with Observed Outcomes  

Describing change in continuous observed outcomes is common in applications of 

longitudinal models. A continuous outcome, sometimes called a quantitative variable (versus 

qualitative), is one that can assume a large number of values, in theory, any value between 

the lowest and highest points on the measurement scale (e.g., achievement scores, weight, or 

depression). Observed continuous outcome variables are often assumed to be normally 

distributed. This chapter considers two models for describing change: (a) a growth curve 

model and (b) an autoregressive model. The choice of which type of model to use depends 

on the research questions asked because the models provide different, but not necessarily 

opposing, perspectives on the description of change. 
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Growth curve models describe change using continuous growth factors. These 

growth factors are specified in a way that describes the starting point and average rate of 

change for a continuous change process, along with individual variability around the growth 

factors. Autoregressive models describe time-to-time change, where the underlying change 

process is discontinuous; that is, not a smooth or constant change process. The following 

section provides a brief introduction of the growth curve model and autoregressive model, 

beginning with the most straightforward setting of observed continuous outcomes. The next 

section then includes a brief description of each of these models, where the outcomes are 

categorical. 

Continuous Observed Outcomes: The Growth Model  

The growth curve model, in a simple form with observed continuous outcomes, 

describes individual differences in repeatedly measured outcomes using growth factors and 

their associated means and variances. The intercept growth factor mean describes the 

average initial status value when centering at the first time point2, and the intercept growth 

factor variance describes the amount of individual variation in the growth process at this 

time point. The slope growth factor mean describes the average rate of change between time 

points, and the slope factor variance describes the variation in the individual growth rates. 

Using a math achievement example, the interpretation of growth factors means could be as 

follows: “In grade six, the average math score was 80, and, on average, students’ scores 

improved 6.7 points from year to year,” where the estimated mean of the intercept factor is 

80 and the estimated mean of the slope factor is 6.7. 

                                                 
2 Different centering points allow the intercept to describe the mean value at any given time point. For 
example, centering at the last measurement occasion allows inferences about where individuals end up at the 
last time point in the study. 
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Growth curve models fit a trend line for each individual in the sample. These lines 

describe intra-individual change. Individual variation is captured by random effects (i.e., the 

variation in the growth factors) and is used to summarize the heterogeneity in growth of the 

individuals in the sample (i.e., inter-individual differences). The variance of the intercept 

factor describes the amount of variation of the individuals at the centering time point. The 

variance of the slope factor describes the amount of variation in the growth rate over the 

individuals. A nonsignificant variance indicates that there is not significant variation among 

the individuals for the given growth factor. Figure 2.1 depicts a generic path diagram for a 

growth curve model with a continuous outcome, Y, measured at four time points, and two 

continuous growth factors, the intercept, I and the slope, S. The arrows pointing into the Y’s 

indicate residual variance on the outcomes. The arrows pointing to the growth factors (i.e., I 

and S) indicate that the variances are estimated for those factors.  

 
Figure 2.1. Path diagram for a general growth model. 

  
For a general linear growth curve model, each individual’s status on the outcome Y is 

assumed to change at a constant rate, and these rates vary randomly for the population of 

individuals. The outcome, Yit , for person i is measured at time t, with Ti time points (t = 1, 

…, Ti). The simple linear growth curve model that describes individual change is  

Y1 Y2 Y3 Y4 

I S 
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where xit is the time variable (e.g., age, months, grades, or years). Depending on the 

application, measurements for all individuals may occur at the same time (i.e., xit = xt for all 

i), but this is not necessary. As described above, there are two parameters of individual i : Ii, 

the status of that person at the first time point in the study, and Si, that person’s linear rate 

of change per unit increase in xit.  

Many variations of the common growth curve exist and are able to facilitate 

modeling change in a range of outcomes and applications. Some extensions include models 

that describe curvilinear or nonlinear change, models that include predictors of inter-

individual differences or predictors at higher levels of nesting (e.g., multilevel context 

variables), or models that include more than one growth process (e.g., parallel process 

growth models). Growth mixture modeling (Muthén & Shedden, 1999; Muthén et al., 2002) 

is a type of analysis that uses a latent class variable to capture heterogeneity in growth 

trajectories and is considered an advanced extension of the growth curve model. 

One key feature of the growth curve model is that the repeatedly measured 

outcomes are related to each other through the growth factors and not directly related to 

each other. This is a feature that distinguishes this model from autoregressive models. 

Continuous Observed Outcomes: Autoregressive Models 

An autoregressive model describes change from a different perspective than a 

growth curve model does. Instead of using continuous growth factors and their variances to 

describe individual change, autoregressive models explore the time-adjacent relationships of 

individuals’ outcomes. The main feature of these models is that an outcome is directly 
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related to one (or more) of the previously measured outcomes. First-order autoregressive 

models are those where each outcome is directly related to only the immediately previous 

one, implying that the correlations of outcomes decrease in magnitude as a function of the 

distance from the diagonal of the correlation matrix of all time points (Curran & Bollen, 

2001).  

An autoregressive model consists of a series of regressions, one for each time point, 

of the outcome on one (or more) prior outcomes of the series. A simple autoregressive 

model is depicted in Figure 2.2. The regression coefficients describe the direction and 

strength of the relationship between adjacent outcomes. These coefficients can be 

constrained to be equal across time, implying a stationary process. Figure 2.2 depicts a first-

order autoregressive model where adjacent time points are being regressed on each other 

(i.e., y2 on y1 and y3 on y2, etc.). A second-order effect would involve the regression of y3 on y1, 

y4 on y2, and so on.  

 

 

 
 
Figure 2.2. Path diagram for a generic first-order autoregressive model with 
continuous observed outcomes. 

 
 
In autoregressive modeling, the unit of time is not explicitly included in the model. 

There are no assumptions about the distances between measurement occasions. Therefore, 

measurement occasions can be equally or variably spaced. The regression coefficients that 

y1 y2 y3 y4 
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relate adjacent time points identify if, and to what extent, change occurred between the 

measurement points.  

In sum, the key distinguishing feature between the growth curve model and the 

autoregressive model is the way the models describe the relationships of the repeatedly 

measured outcomes. Growth curve modeling describes relationships of the outcomes using 

growth factors, while autoregressive models describe the relationships through regressions of 

adjacent time points. For this reason, growth models are generally used when research 

questions focus on the average rate of change over a given time and the growth process is 

assumed to be continually occurring at the same rate. Autoregressive models directly 

describe change among time points, and are often used when change is assumed 

discontinuous. 

Categorical Observed Outcomes: Growth Modeling   

Growth modeling with categorical variables is appropriate for two types of 

categorical outcomes: binary and ordered polytomous. Dichotomous or binary variables arise 

when there are only two categories of the outcome--for example, yes/no items, or 

failure/success indicators. Ordinal or ordered polytomous variables exhibit an ordering 

among the various categories, but the distance between these categories is not specified (e.g., 

the difference between category 1 and 2 is not necessarily the same as the distance between 

categories 2 and 3). Examples of ordered polytomous variables are social class indicator 

variables (e.g., low, middle, and high), proficiency level variables (e.g., low, moderate, 

moderately high, and high), and Likert scale variables that measure agreement with an item 

(e.g., strongly disagree, disagree, agree, and strongly agree).  
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Growth modeling with categorical outcomes is driven by the assumption that there is 

an underlying continuous distribution for an item (denoted y*), and that the categories of the 

variables are cuts in the y* distribution (Muthén and Muthén, 2007). The growth parameters 

describe individual differences in the probability of being in the categories of the outcome. 

For more on the use of growth models that describe change in categorical outcomes, see 

Fitzmaurice, Laird, and Ware (2004) and Hedeker and Gibbons (1994). 

Categorical Observed Outcomes: Autoregressive Models   

Autoregressive models provide a natural way to describe change in categorical 

outcomes. Any type of categorical outcome can be used with these models because the 

models use conditional probabilities to describe change among the categories of the 

outcomes across time. The relationship between two categorical variables can be specified as 

a multinomial logistic regression, where the variable at time t is regressed on the variable at 

time t-1.  

Consider the categorical variable, C, with K categories that is predicted by a 

continuous covariate, x. The multinomial logistic regression is given by the equation 

1
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where the last category, K is a reference category with 0, 0K K   . The relationship 

described in Equation 2 includes a continuous covariate, x, but categorical covariates can 

also be used as predictors of C. 

For applications that use categorical covariates, dummy variables (or design 

variables) are included in the model as indicators of the categories of the variable. For a 

variable that has M categories, M-1 dummy variables are used. Consider a categorical variable 
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with three categories (i.e., M = 3). The dummy variable dim, with m = 1,…M-1, can be used 

where 1 1id  if 1ic  , denoting that an individual is in category 1 of the variable C, and 

2 1id   if 2ic  , denoting that an individual is in category 2 of the variable C. The dummy 

variable, 3id , is not included in the model because category 3 is selected in this case as the 

reference category. The relationship of a categorical variable C measured at time point t, (Ct), 

can be predicted by a categorical variable from time point t-1, (Ct-1). Let both Ct and Ct-1 have 

three categories (k, m = 1, 2, 3). The multinomial logistic regression of Ct on Ct-1 is given by  
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where 3 0  , 13 0  , and 23 0  , because the last category is considered the reference 

category for standardization (Reboussin et al., 1998). The relationship of the two categorical 

variables in Equation 3 can be expressed in terms of each of the categories of Ct-1 as follows  
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Six parameters of the multinomial logistic regression relate the two categorical 

variables, namely, 1 2 11 12 21, , , , ,      and 22 . The  ’s, are the logistic regression 

coefficients and represent the change in the logit corresponding to a change of one unit in 

the independent variable. When dummy variables are used, the value of the corresponding 

logistic regression coefficient represents the difference in the log odds of Ct = k versus Ct = 
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K, between individuals belonging to the category indicated by the dummy variable compared 

to individuals in the reference category. This value is the natural log of the ratio of odds of Ct 

= k (versus Ct = K) for belonging to the category indicated by the dummy variable compared 

to belonging to the reference category. The most common way of interpreting a logistic 

regression coefficient is to convert it to an odds ratio by taking the exponent of the 

coefficient (e.g., 11e ).  

It is useful to express the relationship of the two categorical variables using a 

transition matrix (also called a transition table), where the multinomial logistic regressions 

define the elements of the transition matrix. Table 2.1 presents a transition matrix that shows 

the relationship between two categorical variables, each with three categories. The cells of 

the table are expressed as conditional probabilities, values that are estimated using Equations 

3 through 5. 

Table 2.1. Transition matrix for two categorical variables, each with three categories 

                                              Ct 

Ct-1 1 2 3 

1 P(Ct=1|Ct-1=1) P(Ct=2|Ct-1=1) P(Ct=3|Ct-1=1) 

2 P(Ct=1|Ct-1=2) P(Ct=2|Ct-1=2) P(Ct=3|Ct-1=2) 

3 P(Ct=1|Ct-1=3) P(Ct=2|Ct-1=3) P(Ct=3|Ct-1=3) 

 

Consider the transition term P(C2=1|C1=2) that represents the probability of being 

in category 1 of Ct, given membership in category 2 of Ct-1. Using Equation 5, this value can 

be expressed as follows, 

1 21
1

1 21 2 22

exp( )
( 1| 2)

1 exp( ) exp( )
t tP C C

 

   



  

   
. 



 27 

Because these multinomial logistic regressions model longitudinal data, these values are the 

transition probabilities. These values describe the probability of transitioning to a category at 

time 2, given an individual’s membership in a category at time 1. Other covariates can be 

included in the model and are described in more detail in a later section. 

Longitudinal Models with Latent Variable Outcomes 

All of the models described in this chapter thus far have been concerned with 

observed outcomes. It is possible to use the same longitudinal models with outcomes that 

are not directly observed (i.e., latent variable outcomes). As with observed outcomes, latent 

variable outcomes can be both continuous and categorical. Latent continuous variables are 

usually referred to as factors, while latent categorical variables are usually referred to as latent 

class variables. When considering models with latent variable outcomes, the focus is no longer 

on the measured items but rather on the latent variables. Within the latent variable modeling 

framework, it is possible to have continuous or categorical measured items, or the 

combination of the two, as indicators of a latent variable, which may be either categorical or 

continuous.  

Defining the Latent Variable  

Most commonly, latent variables are identified by a set of items at each time point. 

Depression, for example, is often considered a latent variable (i.e., a depression factor) that is 

measured by a set of items related to depression symptomology (items such as “sleeping a 

lot,” “having a hard time being active,” and “feeling blue”). The use of multiple observed 

items requires a measurement model that relates the observed items to the latent variable 

(e.g., factor analysis or latent class analysis). Factor analysis is used when the latent variable is 
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thought to be continuous (i.e., dimensional), and latent class analysis is used when the latent 

variable is thought to be categorical. Other measurement models are also available and are 

discussed in a later section. 

Continuous Latent Outcomes 

Autoregressive models can describe change among latent continuous factors over 

time. In these models, a set of items measured repeatedly over time identify the continuous 

latent factor. Similar to change in continuous observed variable, the autoregressive 

relationship of latent variable outcomes is achieved by a set of regressions of the factors on 

each other. First-, second-, and higher-order relationships are possible.  

Growth models that use latent continuous outcome variables are called multiple 

indicator growth models or higher-order growth models. These models can quickly become complex 

and require several measurement assumptions. Multiple indicator growth models use 

repeatedly measured items to identify factors over time, and growth parameters model 

change in the factors. 
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Figure 2.3. Model diagram for a multiple indicator growth model. 

 
Figure 2.3 depicts a general multiple indicator growth model that has four items, yti, 

that are repeatedly measured over t time points. The four items identify a continuous latent 

factor at each time point, ft . The growth factors, I and S, describe change in the factors ft  

over time. To assure that the growth factors are truly describing change in the factors and 

not just measurement differences, measurement invariance is imposed. Specifically, the 

factor loadings are assumed invariant across time. That way, the growth factors are 

describing mean shifts in the factors ft over time.  

Categorical Latent Variable Outcomes 

Similar to modeling change in observed categorical variables, growth models can 

describe change in latent categorical variables (i.e., latent class variables) when there is an 

ordering to the categories. For ordered categorical variables, a higher order growth model 

can describe change in the categories of the latent class variables. The use of growth 
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modeling to describe change in latent class variables is not common, instead change in the 

categories is described using autoregressive models. These models are similar to those with 

observed variables except for the fact that these models describe change among the 

categories of the latent variable. This type of model is the focus of this dissertation. The 

LTA model is a model that can describe changes among latent categorical variables. The rest 

of this chapter describes the details of the specification and estimation of this model. 

The Latent Transition Analysis Model 

Latent transition analysis describes a type of longitudinal autoregressive model common 

in social science research. Examples of the application of the LTA model include testing 

children’s drawing development and skills acquisition (Humphreys & Tanson, 2000), testing 

drug use onset and subsequent abuse (Graham, Collins, Wugalter, Chung & Hansen, 1991), 

and studying of the progression of health-risk behaviors in youth (Reboussin, Reboussin, 

Liang, and Anthony, 1998). 

LTA has its roots in latent class theory as presented by Lazarsfeld and Henry (1968) 

and Wiggins (1973). The outcome variable in LTA is a latent categorical variable captured 

using a measurement model, which is most commonly a latent class analysis (LCA) model. 

The LTA model considered in this dissertation is specified in the latent variable framework 

of Mplus (Muthén, 2002; Muthén & Muthén,1998-2007). Within this framework, many 

modeling extensions are possible, some of which are highlighted in this dissertation.  

It is important to note that the LTA model describes a type of autoregressive model 

common in social science applications. Researchers in other disciplines use methods that 

explore change using similar, if not identical, models. However, these models go by different 



 31 

names. Markov modeling (named after Andrey Markov) is a general name for models that 

describe transitions among states over time. Variants of the Markov model include models 

that do not assume perfect measurement in the outcomes and those that allow for a higher-

order population for which there are different transition probabilities. The latent Markov 

model (Baum, Petrie, Soules, & Weiss, 1970; Vermunt, Langeheine, and Böckenholt, 1999; 

Wiggins, 1973) is another name for the latent transition analysis model described in this 

dissertation. 

The LTA model combines the cross-sectional measurement of categorical latent 

variables and the longitudinal description of change in the categories of the latent variable 

over time. Because of this, this chapter’s presentation of LTA begins by describing latent 

class analysis and then shows how LTA builds on the LCA measurement model. The 

description focuses on LCA as a measurement model because LCA is the most common 

measurement models for LTA applications. However, descriptions of other measurement 

models are also included. After describing the measurement model alternatives and details 

regarding selection of the appropriate model, the remainder of the chapter focuses on the 

LTA model specifications.  

Latent Class Analysis (LCA) 

LCA has a rich history outside of LTA as a cross-sectional data analysis technique 

frequently used in applied research. Conceptually similar to factor analysis, LCA uses an 

underlying latent variable to describe the relationship among a set of observed items. The 

distinguishing feature of LCA is that the underlying latent variable is categorical, and its 

manifest variables (indicators) are categorical. Lazarsfeld and Henry (1968) introduced the 

LCA model as a way to categorize individuals into classes (sometimes referred to as latent 
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groups, states, or statuses) based on a series of measured dichotomous survey items. Since its 

introduction, the LCA model has been applied to many substantive research areas as a way 

of capturing unobserved heterogeneity in a population.  

Classical LCA models only used categorical observed items (e.g., binary, ordered, or 

unordered polytomous variables). However, with advances in the statistical algorithms used 

to estimate these models and their implementation in more statistical software packages, it is 

possible for LCA models to have any type of outcome (e.g., binary, ordinal, nominal, count, 

and continuous) or any combination of them. Some researchers use the term latent profile 

analysis (LPA) to describe LCA with continuous outcomes.3 For more on the application of 

LCA models with continuous outcomes see Vermunt (2004). For more information on the 

collection of possible outcomes and their combination for the LCA models available in 

Mplus, see Muthén (2006) and Muthén and Muthén (2007).  

LCA Model Parameters   

There are two types of LCA model parameters: item probability parameters and class 

probability parameters. For LCA models with binary outcomes, the item parameters correspond 

to the conditional item probabilities, i.e., item probabilities conditional on latent class 

membership. Each item probability parameter contains information on the probability that 

an individual in a given latent class has of endorsing the item. The class probability 

parameters specify the prevalence of each class in the population (i.e., relative frequency of 

class membership).  

                                                 
3 This dissertation considers LCA models with observed categorical outcomes. Thus, from this point on, the 
model parameters discussed only pertain to LCA models with categorical outcomes. 
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The LCA model with p observed binary items, u, has a categorical latent variable C 

with K classes (C = k; k = 1, 2,…, K). The marginal item probability for item uj = 1 (j= 1, 

2,…, p) is given by 

 
1

1 ( ) ( 1 )
K

j j

k

P u P C k P u C k


     ,                                   (7) 

where the conditional item probability in a given class is defined by the logistic regression 
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where the νjk is the logit for each of the uj’s for each of the latent classes, k. The class 

prevalence is k = ( )P C k . Assuming conditional independence of the u’s within class, the 

joint probability of all the p observed items is given by 
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Figure 2.4 presents the path diagram of the general latent class model. Variables in 

boxes represent measured outcomes, u. The circled variable represents the unordered latent 

class variable, C, with K categories. The conditional independence assumption for LCA 

models imply that the correlation among the u’s is fully explained by the latent class variable, 

C. Thus, there is no residual covariance among the u’s.  
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Figure 2.4. General latent class analysis diagram. 

 
Conditional item probabilities are important model parameters because they are used 

to attach substantive meanings to each class. These values are plotted in an item probability 

plot, as depicted in Figure 2.5, to aid in the interpretation of the latent classes. Along the x-

axis are the observed items, while the y-axis displays the conditional item probabilities for 

each of the classes. Figure 2.5 displays two items probability plots for an example LCA 

solution with two classes measured by five observed items. The panel on the left of Figure 

2.5 is an example of an ordered solution and the example on the right is an example of an 

unordered solution.  
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Figure 2.5 Item probability plots for ordered (left) and unordered (right) LCA 
solution with binary outcomes. 

 
The panel on the left in Figure 2.5 displays two profiles that do not cross. The top 

profile (Class 1) is characterized by having a relatively high probability of endorsing all the 
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items while the lower profile (Class 2) is characterized by having a low probability of 

endorsing all the items. This is considered an ordered solution because the profiles do not 

cross. For example, if the 2-class solution on the left had items that measured violence 

exposures, Class 1 would be interpreted as the “high exposure” class and Class 2 as the “low 

exposure” class. 

The right panel in Figure 2.5 is an example of an unordered latent class solution 

where the class profiles cross each other. This contrasts the solution on the left where classes 

are either high or low across all the measured items. The profiles in the right panel of Figure 

2.5 show that items 1, 2, 4, and 5 are significant in differentiating the two profiles. Using the 

violence exposure example from before: if items 1 and 2 were community violence items, 

Class 1 would be interpreted as a “community violence exposure” class because the class is 

characterized by having a high probability of endorsing the first two items but not the other 

items. If items 4 and 5 measured exposure to peer violence, Class 2 would be the “peer 

violence exposure” class because individuals in this class have a high probability of 

endorsing the peer violence items but not the rest of the items.  

Item probability plots display the conditional probabilities and are helpful for 

inspecting the profiles of the latent classes. The actual values of the conditional probabilities 

are often displayed in tables. The relative frequencies of the latent classes are denoted by the 

class prevalence parameters, δk. These parameters describe the relative frequency or 

proportion for the classes at each time point. These values are often displayed in the legends 

of the item probability plots, as seen in the two plots found in Figure 2.6. 
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After an LCA model is fit, posterior class probabilities can be estimated. Posterior 

probabilities are similar to the estimates of factor scores once a factor analysis model has 

been fit.4 Posterior class probabilities values that indicate the individual’s probabilities of 

being in each of the latent classes of the fitted model, given the individuals’ observed 

response pattern on the measured items. The probabilities are a function of the model’s 

parameters (i.e., the estimated item probabilities and the estimated prevalence of each latent 

class). Each individual can be assigned to the latent class for which they have the highest 

posterior probability of membership. For example, consider an individual that has posterior 

probabilities of being in the three classes of 0.80, 0.15, and 0.05 for Classes 1, 2, and 3, 

respectively. This individual would be assigned to Class 1 because that is where the highest 

posterior probability is observed. The process of assigning individuals to one of the latent 

class is referred to as modal class assignment. 

The LTA Model 

As described above, the LTA model builds on the LCA measurement model. Figure 

2.6 depicts how the LTA model relates the latent class variables at different time points to 

each other using an autoregressive relationship. The LTA model presented in Figure 2.6 

displays a three-time point diagram of an LTA model. With multiple time points, the same p 

items are repeatedly measured, necessitating an additional index that denotes the 

measurement occasion. As a result, there is an additional subscript t on the items when they 

are discussed in a longitudinal setting.  

                                                 
4 In Mplus, posterior probabilities can be saved to an external data file using the “SAVEDATA” command and 
specifying “save = cprobabilities”. 
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The LTA model depicted in Figure 2.6 uses three time points, thus t = 3. The three 

binary outcomes utj, (j = 1, 2, 3) are measured at each of the three time points. The outcomes 

are used as indicators of the categorical latent class variables at each time point, Ct, that has K 

classes, where there are three classes at each time point (i.e., K=3 for all t ). 

 
Figure 2.6. A latent transition model diagram with three observed binary variables 
and three measurement points. 

 
There are t-1 transition points for any LTA model. For the LTA model depicted in 

Figure 2.6, the latent class variable for time point t is regressed on the latent class variable at 

time point t-1 (i.e., C2 on C1, and C3 on C2). The autoregressive relationship of the latent class 

variables over time is similar to the relationship of the categorical observed variables in 

Equation 2 for observed variables. Instead of the C’s representing observed categorical 

variables, in the LTA setting they represent the prior latent class variables. The relationship 

of the latent class variables can be expressed using Equation 3,  

 

 
1 1 2 2

( 1) 3

1 1 2 21

exp
P( | )

exp

k k i k i

ikm it i t

q q i q iq

d d
C k C m

d d

  


  




 
   

 
 ,                            

where ikm is the transition probability for individual i to be in latent class k at time point t, 

given that the individual was in latent class m at the preceding time point, t - 1. The odds 

ratio is given by exp( mk ) and is the ratio of the odds of being in class k at time t versus 
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Class 3 (the reference class) for those who were in class m at the previous time point (t-1), 

compared to those who were in Class 3 (i.e., the reference class) at the previous time point. 

When covariates are included in the LTA model, the transition probabilities are no 

longer conditioned only on the previous time point, but also on the values of the covariates. 

Consider an example where a binary indicator of gender (male = 0, female = 1) is included in 

the LTA model. A transition probability is given by the following equation  

1 1 1 2 2 2

exp( ( ))

exp( ( )) exp( ( )) 1

k mk k i
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m i m i
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.                (10) 

 

Equation 10 shows that when the value of the gender indicator takes on the value of one, 

there is an additional term, k (femalei), in the model that changes the value of the transition 

probabilities. The logistic coefficient k describes the change in the log odds (i.e., increase or 

decrease depending on the sign of the coefficient) for female students, as compared to male 

students, of being in class k compared to Class 3 (the reference class) at time point t. The 

odds ratio for being Class 1 versus Class 3 when comparing females to males would be 

exp( k ). 

In a model with three classes, there will be two logistic regression coefficients for 

gender at each time point: one for Class 1 ( 1 ) and one for Class 2 ( 2 ). Suppose an estimate 

of 1  = -0.25 is obtained. This would be interpreted in the following way: Being female 

instead of male decreased the log odds of being in Class 1 relative to Class 3. This implies 

that the odds ratio for being in Class 1 versus Class 3 when comparing females to males is 

0.77 ( 0.25e ). 
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Measurement Model Specification 

As previously mentioned, LCA is the most commonly used measurement model in 

applications of LTA. Several important details involving the LCA model are highlighted in 

the following sections. These include decisions regarding the number of latent classes and 

how to determine if measurement invariance is reasonable for this application.  

Deciding on the Number of Classes in LCA 

Thus far, the number of latent classes has been discussed as if the number was a 

known quantity. In most applications of LCA, however, the number of classes is not known. 

The process of deciding on the number of classes that sufficiently describes the 

heterogeneity in a set of items involves fitting a series of LCA models. This process usually 

begins by specifying a 2-class LCA model and then increasing the number of classes until the 

models no longer converge or the results of the models are nonsensical. The fit of each of 

the models considered is compared and used to determine the number of classes that 

provides the most meaningful and statistically-sound results.  

LCA is a type of mixture model. Mixture models (also called finite mixture models) 

characterize and parameterize heterogeneity based on the idea that the overall population 

results from a mixing of more than one characteristically different sub-populations, where the 

subpopulations are not directly observable. Latent classes identify the latent subgroups in the 

population. The researcher must determine, using statistical indices and the interpretability 

of the results, how many latent classes (i.e., latent subpopulations) exist in the population; or, 

at least, how many latent classes are needed to fully capture the population’s heterogeneity. 
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In the literature, there is no one single statistical indicator commonly accepted for 

use in determining the appropriate number of classes for a given population in mixture 

models. Even though LCA models provide a log likelihood value for a given estimated 

model and dataset, the likelihood value cannot be used in traditional ways to compare nested 

models. LCA models that differ by one class (e.g., a (k-1) class model and a (k ) class model) 

are in fact nested LCA models, but traditional likelihood ratio testing (LRT; see, for example, 

Bollen, 1989) is not applicable because necessary statistical properties are not met.5  

As an alternative, other statistical indices can aid in the decision on the number of 

classes. An alternative likelihood-based test called the bootstrap likelihood ratio test (BLRT; 

see McLachlan & Peel, 2000) can be used. This test uses a bootstrapped sample to estimate 

the log likelihood difference distribution of the two nested LCA models, for example a k-1 

and a k-class model. The significance of the BLRT p-value is used to assess if there is a 

significant improvement in fit between models that differ in the number of classes.6 In 

Mplus, the BLRT explores the change in fit between the k-1 and k-class models but, in 

general, the BLRT can test k-g versus k-class models, where g < k. For example, for a model 

that was specified as a 4-class LCA, the BLRT p-value compares the fit between the 3- and 4-

class models. A significant BLRT p-value would indicate a significant improvement in fit 

with the inclusion of a fourth class compared to the 3-class model. A nonsignificant BLRT p-

value would indicate that the 4-class model does not provides a significantly better fit when 

compared to the 3-class model. 

                                                 
5 The LRT is not applicable for nested LCA models because the k -1 class solution is a special case of the k - 
class solution, where the probability of one of the class is set to 0. A probability that is set to zero is fixing a 
parameter at the border of its parameters space, which results in the difference of the log likelihoods not being 
chi-square distributed. 
6 The BLRT is available in Mplus by requesting “TECH14.” 
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Information criteria (IC) can compare fit for a set of fitted models. ICs are fit indices 

based on the log likelihood value of a model with an added penalty that varies across the 

different ICs (e.g., a penalty for small sample size or large number of parameters in the 

model). The idea is that, all other things being equal, for two models that have equal log 

likelihoods, the model with the fewest parameters and larger sample size is better. The value 

of the ICs can compare model fit across a range of models, where the lowest value of a given 

IC among those considered identifies the preferred model. The commonly used ICs for LCA 

class enumeration are the Bayesian Information Criterion (BIC; Schwartz, 1978) and the 

Adjusted BIC (ABIC; Sclove, 1987). The BIC applies a penalty for the number of parameters 

(g) and the sample size, and is defined as 

BIC = -2 logL + g log(n). 

The ABIC changes the penalty by adjusting the sample size n, such that models with larger 

sample sizes receive a smaller penalty. The ABIC replaces the sample size n in the BIC 

equation above with n*, 

n* = (n+2)/24. 

A recent simulation study by Nylund, Asparouhov, and Muthén (in press) indicated that the 

BLRT and the BIC are the best and most consistent statistical indicators for use in 

determining the number of classes in LCA models. 

Taken together, the BIC and BLRT are statistical indicators that can aid in a decision 

on the number of classes needed in an application of LCA. It is also important, however, to 

consider the interpretability of the classes provided by the solution. It is possible that the 

statistical indices point to a solution that does not make any substantive sense and may not 
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be a useful model for describing the heterogeneity in the population. Both statistical and 

practical considerations need to be considered when deciding on the number of classes. 

Selection of the Measurement Model 

Most applications of LTA use LCA as the measurement model that identifies the 

categories of the latent variable. This is a natural choice because LTA is often considered a 

longitudinal extension of LCA. For applications that only consider the LCA model as a 

possible measurement model, the only necessary decision is how many classes are needed for 

the latent class variable. When LTA is specified in a more general latent variable modeling 

framework, however, a richer array of measurement models becomes available. Thus, there 

are two decisions to be made: (a) which type of latent variable model to use and (b) how 

many classes are necessary at each of the time points. 

Measurement models considered in this dissertation include standard latent class 

models and more advanced hybrid models. The available models include continuous and 

categorical latent variables, as well as the combination of the two. Specifically, the 

measurement models considered are as follows: factor analysis (FA),7 latent class analysis 

(LCA), latent class factor analysis (LCFA), and factor mixture analysis (FMA).  

Factor Analysis is a latent variable technique that assumes the underlying latent 

variable has a continuous normal distribution. LCFA and FMA have both continuous and 

categorical latent variables. Because they contain both types of latent variables, LCFA and 

FMA are considered hybrid models. LCFA is a more restricted type of hybrid model that can 

                                                 
7 Factor Analysis is considered as a possible measurement model. If it is determined that a factor analysis model 
is an appropriate measurement model, the relationships among factors over time would not be modeled using 
LTA, and a standard autoregressive model would be used to model the relationship over time. This is because 
factors are continuous latent variables and LTA models change among categorical latent variables.  
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be used to describe non-normal factor distributions. In LCFA, latent classes act as support 

points for the distribution, and there is no within-class variation of the factor. For example, 

in the application to peer victimization data, LCFA can describe the distribution of peer 

victimization in such a way that would allow for a non-normal distribution. The classes could 

identify key distributional points, such as classes of individuals at the high, medium, and low 

ends of a peer victimization continuum.  

FMA is another type of hybrid latent variable model. However, it is a more flexible, 

and thus a more general, hybrid model than the LCFA model. FMA models have both 

continuous and categorical variables. Different from LCFA, the FMA model allows for 

within-class variation of the factor(s). There are several different specifications of the FMA 

model. For example, FMA models can be specified with or without invariance of the 

measurement parameters across classes for the factors. Further, models can have different 

numbers of factors within the latent class classes. For more on these models and the 

comparisons to other techniques, see Lubke and Muthén (2005), Muthén (2006), and 

Muthén and Asparouhov (2006). 

Comparing the Fit of Measurement Models 

For applications that consider more than one type of measurement model, the first 

decision is to determine which type of model to use at each time point. Because a range of 

measurement models can be considered at each time point in the analysis, a selection 

method is necessary to decide which model is most appropriate for the given application. 

This decision is made for each time point in the analysis. 

In this dissertation, the following comparison strategy was used to compare relative 

fit for the measurement models considered. For each type of model considered (i.e., FA, 
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LCA, LCFA, and FMA), several differently specified models were considered. For example, 

for the LCA model, it is likely that 2-, 3- or 4-classes may be considered. Fit information is 

collected for each model considered and compared to other models within the same type. Fit 

information that can be used to compare fit includes the log likelihood value, the number of 

parameters the model estimates, the BIC, and when appropriate, the BLRT p-value (BLRT 

can be used for LCA models).  

The model that provides the best fit for each type (i.e., best fitting LCA model, best 

fitting LCFA, etc.) is selected using the available statistical indicators. Then, the selected 

models for each type are compared across model types to decide which model should be the 

measurement model for the given time point. If there is no clearly superior model for a 

given time point, this is noted and compared to the results from the other time points. This 

assesses if there is consistency across time points that can aid in the decision process. It is 

not necessary to have the same measurement model across time. When possible, however, 

having the same measurement model across all time points is helpful in making the model 

specification and interpretation more straightforward. 

Measurement Invariance 

If the same measurement model is used across all time points (e.g., LCA) and the 

same number and type of classes are used, it is reasonable to explore measurement 

invariance. Measurement invariance assumes the equality of the parameters of the 

measurement model, specifically conditional item probabilities for LCA variables, and the 

factor loadings for factors. In the LTA model that uses LCA, the measurement parameters 

are the conditional item probabilities estimated for each class at the different time points. 

Three levels of measurement invariance are possible: full invariance, partial invariance, and 
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full noninvariance. Full measurement invariance implies that the conditional item 

probabilities are invariant (i.e., the same) across all the different time points. This means that 

the same number and type of classes occur at all time points. As a result, the interpretation 

of the transition probabilities is straightforward since the meanings of the classes are the 

same across time. When the latent class solutions have the same number of classes and the 

profiles of the classes look alike across time, measurement invariance may be a plausible 

assumption. Full measurement noninvariance imposes no constraints on the measurement 

parameters across time.  

Partial measurement invariance involves equality constraints for some of the 

measurement parameters across time, while the rest are unconstrained. A series of partial 

measurement invariance strategies can be specified, ranging from equality constraints on the 

item probabilities for a single item across time within a specific class, to all items within a 

class being invariant across time. There is a large number of possible invariance 

specifications. Consider a 3-time point LTA model where at each time point there are four 

observed items. If the LCA model identified three latent classes, there are 36 measurement 

parameters (4 items x 3 classes x 3 time points). A range of parameter constraint 

combinations is available for the partial measurement constraints. 

The model with full measurement noninvariance makes no assumptions about the 

equality of the measurement parameters. That is, all measurement parameters are freely 

estimated across classes and across time. Full noninvariance is the most flexible invariance 

strategy, but as a result, often involves the estimation of a large number of measurement 

parameters. Full measurement noninvariance is most practical when there are few time 
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points, the resulting classes appear to be different across time, or there are a different 

number of classes across time. 

Assuming measurement invariance significantly reduces the number of parameters 

and makes interpreting model parameters straightforward. It is possible, however, that the 

latent classes vary in interesting ways over time. Full measurement invariance may not be 

plausible, depending on the nature of the latent classes that emerge, the items that measure 

them, and the time spanned by the measurements. For example, for an application using an 

LCA measurement model, it may be developmentally relevant to have two classes measuring 

violence exposure in adolescents; but by the teenage years, four or five classes may be 

needed to adequately describe heterogeneity in violence exposure. In this case, the number 

of classes increases in a developmentally relevant way because there is more diversity in 

violence exposure as individual’s age due to increasing variability in neighborhood and 

lifestyles. With models that differ in the number of classes across time, it is possible that one 

class remains consistent over time (i.e., a normative class). Therefore, it may be reasonable to 

explore partial measurement invariance where this class is invariant across time and no 

restrictions are put on the other classes.  

Measurement invariance is a model specification that varies according to the dataset 

and variables used in each application. There may be theoretical and conceptual reasons why 

full invariance or full noninvariance may be reasonable or needed. Analytic or computational 

reasons may dictate some level of measurement invariance. Each application of the LTA 

model requires an exploration of measurement invariance that considers these ideas. 

Statistical tests in the form of log likelihood ratio tests (LRTs) can assess if significant 

differences in fit exist using models that impose different invariance strategies. For LTA 
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models where the same number and type of classes emerge at the different time points, a full 

measurement invariance model can be fit and then compared to other models with less 

restrictive invariance assumptions. Issues of measurement invariance should be explored 

allowing the variables to correlate. That is, measurement invariance is tested before the 

relationships of the latent variables are specified, specifically in how the latent variables relate 

to each other longitudinally (i.e., the autoregressive relationship).  

LTA Model Specification 

This section describes specifications that build on the basic LTA model as 

introduced above. There are many complex model LTA specifications, only some of which 

are considered here. The specifications discussed in this chapter highlight the specifications 

considered in the application of LTA to peer victimization in Chapter 3. Other model 

extensions and specifications not included here are discussed in Chapter 4. The following 

section explores issues related to higher-order effects, transition probability restrictions, 

covariates, and distal outcomes. 

Higher-Order Effects   

Higher-order effects are specifications that can capture the time-dependent 

relationships of the latent variables. Many applications of the LTA model assume a first-

order effect (i.e., lag-1 effects), as depicted in Figure 2.6. It is useful to consider higher-order 

effects, especially because they may provide a richer look at development than first-order 

effects could. The higher-order effects allow the exploration of the lasting direct effects 

being a member of a given class has on later class membership.  
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Figure 2.7. A latent transition model diagram with three observed binary variables 
and three measurement points, including a first- and second-order effect.  

 
Figure 2.7 depicts a higher-order effect that is possible when three time points are 

used in the LTA. The arrow connecting C3 to C1 represents a higher-order effect, 

specifically a second-order effect. As depicted in Figure 2.7, even with higher-order effect, 

the first-order model is still included. Without a higher-order effect, C1 influences C3 

indirectly through C2 (i.e., the first-order effects). When the higher-order effect is included, 

C1 influences C3 directly as well as indirectly through C2. The higher-order effect can detect if 

there is a direct relationship of C3 on C1, over and above the first-order indirect effect. LTA 

models that use more than three time points can have second-, third-, and even higher-order 

effects, depending on the number of time points. 

Transition Probability Restrictions 

Restrictions on the transition probabilities allow developmental theory to be directly 

included in the LTA model. As noted, transition probabilities are based on the model 

parameter estimates using Equation 11. Using these values, transition probabilities can be 

fixed to a specific value in ways that are meaningful to the given application. 
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Stationary transitions imply that transition probabilities are the same across transition 

points. A stationary change process implies that individuals are transitioning between the 

latent classes with the same probabilities across all transition points. To test whether 

stationary transition probabilities are applicable, a LRT comparison of a model that assumes 

stationarity and one that does not can be made. As with measurement invariance, stationary 

transition probabilities reduce the number of estimated parameters, but may mask important 

developmental changes if stationarity is a misspecification.  

It is important to note that when covariates are included in the LTA model and 

related to the latent class variables, stationarity is no longer meaningful and should not be 

imposed. Using the multinomial logistic regressions, an individual’s current class 

membership is predicted by class membership from the previous time point. When 

covariates are included, current class membership is predicted by both class membership at 

the previous time point and the value of the covariates. If stationarity were imposed, the 

coefficient for the dummy variable indicating previous class membership would be held 

equal across the different transition points. If there were any important differences in those 

coefficients, the effect of those differences would bias the estimation of the covariate 

coefficients.  

Specifying an absorbing class (called an absorbing state in the Markov literature) is 

another type of restriction possible using the transition probabilities. An absorbing class is 

one that has a zero probability of exiting. For example, the use of LTA for survival analysis 

as seen in Masyn (in press) involves an absorbing state, where absorbing class is the post-

event state since once an individual has experienced the event (i.e., the event of death or first 
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pregnancy), she forever remain in the post-event state. Thus, individuals in the absorbing 

state cannot transition to a state of not having experienced the event.  

Another example of a developmentally relevant restriction on the transition 

probabilities has to do with restricted movement among the latent classes. For example, 

consider an LTA model that explores drug use experimentation. If one of the classes 

identified individuals who had not yet tried drugs, after first experimentation, an individual 

could never transition back into the class indicating non-experimentation. Thus, the 

transition probability for individual to transition back into the non-experimentation class 

from an experimentation class is zero. 

Constraining the cells of the transition matrix to 0 or 1 involves fixing the values of 

the multinomial regression so that the value of the transition probability is the desired value. 

Masyn (in press) clearly describes how this can be done using the six parameters of the 

multinomial logistic regression found in Equation 11, so that the parameters properly 

correspond to the fixed probabilities in the transition matrix, e.g., 21 = 1. Because the 

multinomial logistic regressions use the logit link function to relate the event state in time t 

to the event state in time t-1, it is possible to approximate probabilities of 0 and 1 to any 

degree of precision. Consider the transition probability, 13 , and say that the developmental 

theory suggests that that value should be fixed to 0. Thus,  
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The goal is to determine which values to fix the parameters at so the resulting probability 

will be 0. For this transition probability to equal 0, the denominator needs to be very large, 

so the ratio of the numerator and denominator approximates 0. The value of exp(1) will 
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become very small when 1 is small (that is, a large and negative number). Further, because 

exp(1) and exp(2) will always be greater than 0, the denominator will always be greater 

than 1. We can choose a value for 1 that is sufficiently small so that, regardless of the value 

of 2, the quantity will approximate 0, say 1 = -15. Then 
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Using the same strategy, the remaining parameters of the logistic regressions can be used to 

fix other values of the transition matrix at desired values. For transition probabilities that 

involve both α and β parameters, values of both must be considered to ensure the resulting 

transition probabilities are fixed at the desired values.  

Longitudinal Guttman Simplex  

In some applications of the LTA model, developmental theory can be used to 

restrict the model in ways that follow what is called a Longitudinal Guttman Simplex (LGS; 

Collins & Cliff, 1990). The LGS assumes a monotonic change process and cumulative 

growth states. This implies that skills or observed behaviors at one time point build on the 

skills or behaviors exhibited during the previous time points. In the applications that use the 

LGS, substantive theory about the developmental process restricts the transition model by 

eliminating specific transitions.  

Consider the hypothetical example of math skill acquisition in the context of 

children’s’ development. An LGS learning process would imply that a student must know 

how to add before subtracting, how to subtract before multiplying, and how to multiply 

before dividing. Thus, the learning of new skills has a known pattern where one skill builds 
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upon the next. As a result of this simplex, which assumes an ordering in the way children 

acquire math skills, it is not possible for a student to know how to divide without 

subtracting, or know how to multiply without first knowing how to both add and subtract, 

and so on. The transition table for this process would have several restricted transition 

probabilities. For example, in Table 2.2 certain transition probabilities are fixed at 0 while 

others are freely estimated (denoted by a “ * ” in the table). For instance, the probability that 

a student is in the addition class and transitions into the multiplication class is 0, because the 

simplex assumes that a student must know subtraction before transitioning into knowing 

multiplication. 

It is possible to specify any type of restrictions on the transition matrix. For example, 

the developmental theory of math skill acquisition could allow more than one skill to be 

learned between measurement occasions (i.e., learn both subtraction and multiplication 

between grades 3 and 4). This would imply that the transition probability allowing a student 

to transition from the addition class in grade 3 to the multiplication class in grade 4 would be 

freely estimated (thus that transition would be “ * ” instead of 0 as in Table 2.2).  

Table 2.2. Example transition probabilities for an LTA model following a 
Longitudinal Guttman Simplex of using the math-skill acquisition example. 
Transition probabilities either are fixed at zero (0) or are freely estimated (*) 

  Grade 4  

Grade 3 Addition Subtraction Multiplication Division 

Addition * * 0 0 

Subtraction 0 * * 0 

Multiplication 0 0 * * 

Division 0 0 0 * 
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The LGS approach simplifies both the measurement model and transition model. 

Using the LGS in this example, four binary items indicate if the developmental skills are 

observed (e.g., knows how to add, knows subtraction, and knows how to multiply). Because 

of this, the underlying categorical latent variable becomes an indicator variable, which simply 

identifies which pattern of the observed variables has been experienced for a given 

individual. There are a limited number of possible patterns, all of which may be observed in 

the data. The latent variable indicates particular item patterns and is a confirmatory use of 

LCA as a measurement model. 

While the LGS approach for modeling change may be particularly relevant for 

testing specific stage-developmental hypotheses and is helpful in simplifying the 

measurement model, there are many settings where it is not appropriate. Specifically, this 

simplex is not applicable when change is not monotonic, when multiple indicators are used 

to identify each state, or when the states are not combinations of binary indicators and not 

known ahead of time. 

Covariates and Distal Outcomes 

The inclusion of covariates in the LTA model will, and should, change the estimation 

of the LTA model parameters. It would not be a surprise if the class profiles, class sizes, and 

transition probabilities change to some extent when covariates are included. As described 

before, when covariates are included in an LTA model and are related to the latent class 

variable, the transition probabilities change as a function of the value of the covariates. 

Observed covariates. Within the latent variable framework, covariates and distal 

outcomes are easily included in the LTA model. Covariates can be related directly to the 
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latent class variable or can be included to see if there are differential transition probabilities 

as a function of the covariates. Different covariates are possible and include continuous and 

categorical covariates, and time-invariant and time-varying covariates. Time-invariant 

covariates are often background variables, such as gender or ethnicity, and are variables that 

capture individual characteristics. The values of these variables are treated as constant over 

time, even if measured repeatedly. Time-varying covariates are variables measured 

repeatedly, usually at the same time as the outcome indicators. The time-varying covariates 

are variables whose values may change as time progresses (e.g., students’ feelings of 

depressive feelings or social anxiety), and are variables whose relationships to the outcome 

are of interest. Both time-invariant and time-varying covariates can be included in the model 

and allowed to have time-invariant or time-varying relationships with the outcome. 

Figure 2.8 displays an LTA model that includes both a time-invariant covariate (i.e., 

gender) and a time-varying covariate (i.e., depression). In Figure 2.8, gender is included in a 

first-order LTA model and is related to the latent class variable at each of the three time 

points (C1, C2, and C3). The relationship between gender and the three latent class variables 

could be modeled as having the same effect on the latent classes over time (i.e., time-

invariant effect), or a different effect could be estimated for each latent class variable (i.e., 

time-varying effect). A time-invariant effect of gender would imply that the regression 

coefficients of C1, C2, and C3 on gender would be the same (i.e., the value of * would be the 

same across the C’s). A time-varying effect of gender would allow the values of the 

regression coefficients relating the C’s to gender to be different (i.e., a different value of * 

would be estimated for each time point). 
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Figure 2.8. Model diagram of an LTA model with a time-invariant covariate (gender) 
and a time-varying covariate (depression). 

 
In Figure 2.8, the time-varying covariate of depression has a subscript to denote the 

time point for which the variable is measured, which in this example is at the same time 

point as the outcome variables. Similar to the gender variable, the relationship between 

depression and the latent classes can have a time-invariant or time-varying effect. A time-

varying effect of depression would allow for the exploration of the differential odds across 

time of being in the latent classes based an individuals’ depression score. Model testing (e.g., 

using LRT’s) can be used to determine if a time-varying effect of a covariate is appropriate 

for a given application. 

Latent covariates are also possible and can be incorporated in the model in the form of 

a higher-order latent class variable. As depicted in Figure 2.9, a higher-order latent variable, 

C, is related to the latent class variables at each time point. Different from latent class 

variables used at each of the time points, the higher-order latent class variable is usually 

specified with a predetermined number of classes. Transition probability restrictions can be 
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imposed for each of the classes of the higher-order latent class variable to identify specific 

classes of individuals based on transitions.  

 
Figure 2.9. Model diagram of the LTA model with a higher-order latent class 
variable, C. 

 
One specification of the higher-order latent class covariate involves two classes 

defined as “movers” and “stayers” (see, e.g., Langeheine & Van de Pol, 1994). In the mover-

stayer model, the two classes of the higher-order latent variable identify two types of 

individuals based on their transition probabilities: (a) individuals who transition among the 

classes--the movers and (b) individuals who remain in the same class across time--the stayers. 

The class of movers has an unrestricted transition matrix where each transition probability is 

freely estimated using the multinomial logistic regression relationships described before. The 

stayers have a strict transition matrix, where the diagonal values are fixed to 1 and all off-

diagonal values are fixed at 0. Table 2.3 presents two transition tables that could be observed 

for the movers and stayers. The specification of the mover-stayer higher-order latent class 

variable is only meaningful when the number and type of classes are the same across time 

(i.e., full measurement invariance). Otherwise, the interpretation of the stayers may not be 
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meaningful, because without measurement invariance there is no guarantee that the classes 

are the same across time (e.g., Class 3 of C1 may not be the same as Class 3 of C2).  

Table 2.3. Transition probabilities for movers (left panel) and stayers (right panel) 

   Movers      Stayers  

   C2      C2  

  1 2 3    1 2 3 

C1 1 0.50 0.20 0.30  C1 1 1 0 0 

 2 0.10 0.60 0.30   2 0 1 0 

 3 0.40 0.40 0.20   3 0 0 1 

 

The restrictions on the transition probabilities for the stayer class of the higher-order 

latent class variable are achieved by fixing the values of Equation 10 so that the resulting 

transition matrix is an identity matrix. Other restrictions on the transition probabilities for 

the classes of the higher-order latent class variable are possible. 

Distal outcomes are variables measured after the period considered by the longitudinal 

model. For example, in a study using middle school outcomes, a distal outcome could be an 

outcome measured in high school. Distal outcomes are often included in longitudinal models 

as long-term outcomes related to the change process. In LTA, distal outcomes can be 

included in a variety of ways. As depicted in Figure 2.10, distal outcomes can be related to 

the higher-order latent variable or related to the latent class variable at the last time point. 

Models that do not involve a mover-stayer variable often would have the distal outcome 

relate to class membership at the last time point (captured by the arrow between C3 and the 

distal in Figure 2.10). 
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In Mplus, the impact on the distal outcome is assessed by allowing the mean of the 

distal outcome (or proportion if the distal is binary) to be independently estimated for each 

class of the variable it is related to. For example, to assess the relationship between latent 

class variable C3 and the distal outcome, a different mean of the distal outcome is estimated 

for each class of C3. These distal outcome means can be compared to each other to 

determine if there is a significant difference across classes in terms of the distal outcome8. 

 
Figure 2.10. Model diagram of the LTA model with a higher-order latent class 
variable and a distal outcome. 

 
Assessing Model Fit  

There is not one commonly accepted way to assess overall model fit for LTA 

models. The frequency table chi-square statistics (either Pearson or likelihood ratio-based) is 

not recommended for the LTA model (McLachlan & Peel, 2000). This is because the chi-

square distribution is not well approximated when there are large numbers of sparse cells, 

which often occurs with LTA models. For comparing nested LTA models that differ in how 

                                                 
8 To test if the distal outcome means are significantly different from each other, the “Model Test” feature in 
Mplus uses a Wald Test to test the difference of the two parameters. Another way to test distal outcome 
differences would be to fit two models (one allowing for different distal outcome means and another without) 
and then compare the fit of the models using an LRT. 
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change is specified (i.e., transition probabilities or measurement parameters), the traditional 

likelihood ratio (LRT) test can be used. 

Another way to assess relative model fit is by using residuals. Specifically, the 

bivariate and response pattern standardized residuals can be used as a way to assess how well 

the model describes the observed data. The bivariate residuals are standardized Pearson 

residuals (Agresti, 2002; Haberman, 1973). The response pattern residuals are based on the 

difference between the observed and expected response pattern frequencies. A standardized 

residual that is larger than 1.96 in absolute value is considered a significant residual at the 5% 

level. For the bivariate residuals, the count of significant residuals for all possible bivariate 

relationships is used. When considering response patterns residuals, the number of 

significant residuals in the most frequent response patterns (e.g., the 10 most frequent 

response patterns) can be used to compare model fit. The model with a lower percentage of 

significant residuals would be considered the better fitting model9.  

A careful and thoughtful application of the LTA model helps ensure the model is 

specified in an appropriate way. The analysis steps provided below are a way to help specify 

a LTA model that carefully takes into account the change process being modeled in a given 

dataset. The careful and systematic building of a LTA model helps researchers feel confident 

that the final model and its results are accurate and meaningful.  

Analysis Steps 

The following suggested analysis steps can be used in the application of an LTA 

model in real data analysis settings. The steps begin with descriptive statistics, building up to 

                                                 
9 Both types of residuals are provided by Mplus when “TECH10” is specified. 
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the specification of a longitudinal model that allows for the inclusion of a higher-order latent 

variable, covariates, and distal outcomes.  

Step 0: Study Descriptive Statistics 

As with any data analysis, the application of the LTA model begins by exploring the 

variables used in the analysis. This involves the detection of any possible suspicious missing 

data patterns, data input errors, and unexpected values that may be a result of a coding error 

or some other transcription problem. Summary tables are created for each variable used in 

the analysis (i.e., the outcome variables, covariates, and distal outcomes) and general trends 

noted. Summary information in the form of histograms or box plots for continuous 

variables can help detect outliers in addition to univariate descriptive statistics. Frequency 

tables for categorical outcomes can describe the distribution of the outcomes. All the 

descriptive explorations should be executed for each variable used at each time point in the 

analysis. Descriptive statistics can be compared within a given time point as well as across all 

time points to note general trends. 

Step 1: Study Measurement Model Alternatives for Each Time Point 

The use of multiple measures at each time point in the LTA model necessitates the 

selection of a measurement model that is independently explored at each time point. This 

involves fitting several possible measurement models for each time point and then collecting 

and comparing fit information on each model to determine which model is most appropriate 

for the given application. In the end, the appropriate measurement model will be selected 

based on the statistical model fit information, as well as on the interpretability and 

appropriateness for the larger longitudinal study. This step also includes exploring the 
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validity issues of the measurement model, aiming to ensure that the measurement model 

used provides useful and meaningful results in terms of understanding the outcome. 

Covariates are included in the measurement model at each time point, and validity support is 

achieved when the covariates relate to the measurement model in meaningful ways based on 

the substantive theory of the outcome variables. This is a crucial step in the analysis since the 

measurement model is the foundation of the LTA model because it is used to capture the 

latent variable that is the outcome in the model. 

Step 2: Explore Transitions Based on Cross-Sectional Results 

After the measurement model has been selected, cross-sectional results can be used 

to describe change. Individuals can be assigned to their most likely latent class using modal 

class assignment. Cross-tabulations of class membership changes over time can be created as 

a proxy for changes that occur. These tables can be used to get a preliminary judgment of 

the type of movement occurring in the sample. Also, formal measurement invariance testing 

should take place in this step if the same number and type of classes emerged in the previous 

step.  

Step 3: Explore Specification of the Latent Transition Model without Covariates 

This step is the first one involving a formal longitudinal model. Depending on the 

number of observed items, classes, and measurement points, these models can take a long 

time to estimate. Therefore, to ensure that the specifications are correct, it is best to begin 

with just two or three measurement points. Then, once specification of the model becomes 

more familiar, the number of measurement points can be increased, eventually building up 
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to a model with all of the measurement points. This step includes the exploration of 

transition probability specifications, including stationarity and a higher-order effect.  

Step 4: Include Covariates in the LTA Model 

Once the LTA model has been specified, and invariance specifications and higher-

order effects have been decided upon, covariates are included in the model. Observed 

covariates are included in this step and allowed to have either time-varying or time-invariant 

effects, depending on the application and research questions. Latent covariates, in the form 

of a higher-order latent class variable, can also be included if describing unobserved 

heterogeneity in development is of interest. A mover-stayer latent variable is an example of a 

higher-order latent covariate that can explore the stability of class membership over time.  

Step 5: Include Distal Outcomes and Advanced Modeling Extensions 

After exploring different ways to describe heterogeneity in development, a final 

model is selected. Because the model building strategy involves the specification of different 

models, this step integrates all the insight gained from each step along the way to specify a 

model using all of the information acquired. More advanced modeling extensions can also be 

included in this step, which may be related to the specific research questions of the study. 

This step includes distal outcomes and other variables in the model. 

Summary 

Taken together, the modeling ideas presented in this chapter highlight the flexibility 

in the specification of the LTA model that allows for a rich description of development. 

When LTA is considered within a more general latent variable modeling framework, a range 

of measurement models are available to ensure that the classes are captured in the optimal 
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way. Different model specifications allow for the testing of particular stage-sequential 

growth hypotheses and help ensure the statistical model directly relates to the developmental 

theory that motivates the analysis. This section further highlights the wide array of possible 

model specifications, including stationary assumptions on the transition probabilities, higher-

order effects, and covariates and effects of distal outcomes. Each of these specifications 

requires attention, and they help ensure the specification of the model is based on a well-

specified and developmentally informed final model. These suggested analysis steps can 

serve as a guide to the careful application of these modeling ideas. Chapter 3 includes the 

careful, systematic application of these steps to the peer victimization data.  
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Chapter 3. Methods and Results 

This chapter discusses the application of Latent Transition Analysis (LTA) to the 

study of change in self-reported peer victimization using the analysis steps presented in 

Chapter 2. The application of the analysis steps includes a short discussion of the results of 

each step before moving onto the discussion of the next step. Because of this focus on 

model building, this chapter combines the Methods and the Results sections commonly seen 

in dissertations to enable a discussion of results in the context of each step. Doing this 

highlights how results from each step can be integrated into subsequent steps. This further 

allows for a discussion of some of the modeling decisions that often arise when statistical 

methods are applied to a dataset. Chapter 4 includes a synthesis of the analysis steps and 

discusses the results from the final model and how they contribute to our understanding of 

peer victimization.  

This chapter presents intermediate modeling results as part of the model building 

process. These results, though regularly a part of any model-building process, are often not 

reported in published manuscripts that use LTA. This dissertation includes those results to 

show the different steps that researchers may encounter when working towards a final 

model. This model-building strategy is especially relevant in the application of a complex 

longitudinal model that involves both a measurement and a structural component, such as 

the LTA model. 

The analysis steps presented in Chapter 2 are general enough to be applicable to a 

range of data-analysis applications. It is nearly impossible, however, to envision all the 

nuances that emerge in individual data-analysis settings. This chapter discusses the 
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relationship of the results of the analysis steps to the peer victimization data, and at times 

discusses steps that may not be applicable to other modeling settings. When appropriate, this 

chapter discusses how the analysis steps can be generalized to a broader context. 

This chapter begins with the presentation of descriptive statistics for the variables 

used in the analysis for grades 6, 7, and 8. For the victimization outcomes, an exploration 

using a range of latent variable measurement models follows. After selection of an 

appropriate measurement model, cross-sectional results can be used to explore change. 

Issues of measurement invariance are also considered. Next, an LTA model without 

covariates is considered, and transition probability specifications and second-order effects 

are explored. Covariates that are both time-specific and time-varying are included in the LTA 

model. The application also includes latent covariates that help describe heterogeneity in 

development that is observed. The chapter ends with the specification of the final LTA 

model, a culmination of all the information gained in the analysis steps, which includes many 

advanced-modeling ideas. The Appendixes includes the Mplus syntax for all the models in 

this chapter. 

A summary of the key analysis steps explored in each step in Chapter 2 is below: 

Step 0: Study Descriptive Statistics 

Step 1: Study Measurement Model Alternatives for Each Time Point 

Step 2: Explore Transitions Based on Cross-Sectional Results 

Step 3: Explore Specification of the Latent Transition Model without Covariates 

Step 4: Include Covariates in the LTA Model 

Step 5: Include Distal Outcomes and Advanced Modeling Extensions 
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Step 0: Study Descriptive Statistics 

The first step in any data-analysis strategy is the use of descriptive techniques to 

explore the dataset. A variety of descriptive explorations are part of this step, including 

exploring missing data, checking to see if the distributional assumptions are met, and 

checking for any possible coding or other sort of error.  

Starting with the six measured victimization items, Table 3.1 presents the observed 

sample sizes and the proportion endorsing each item by grade. Because these items are 

binary (i.e., 0/1), where 1 means that the item was endorsed, the endorsement proportions 

represent the item means.  

Table 3.1. Observed sample size and proportion endorsed for the six binary peer 
victimization survey items for grades 6, 7, and 8 

Variable Grade 6 Grade 7 Grade 8 

  N Prop. N Prop. N Prop. 

Bad Names 1,931 0.37 1,707 0.25 1,565 0.20 

Talked About 1,943 0.33 1,737 0.26 1,588 0.23 

Picked On 1,936 0.28 1,722 0.19 1,582 0.14 

Hit and Pushed 1,936 0.21 1,735 0.15 1,588 0.12 

Things Taken/Messed Up 1,943 0.29 1,732 0.19 1,590 0.15 

Laughed At 1,942 0.30 1,733 0.20 1,594 0.18 

 
Several patterns are worth noting based on the results in Table 3.1. Within a given 

grade, the sample size variations are due to item non-response (i.e., a respondent does not 

respond to a given item), but the ranges of sample sizes for a given grade are in the same 

general range. Table 3.1 shows that the average sample size decreases from 1,938 in grade 6 

to 1,727 in grade 7, and to 1,584 in grade 8. There is no evidence suggesting that one item 

had more missing data than the other items.  
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The item means describe the proportion of the sample that endorsed a given item. 

For example, 33% of the sample endorsed the “Talked About” victimization item in grade 6. 

Looking across the item endorsements for grade 6, it is notable that the item with the 

highest item endorsement was the verbal victimization item, “Called Bad Names,” which 

37% of the sample endorsed. The lowest endorsement was the physical victimization item, 

“Hit and Pushed,” which only 21% endorsed. The item with the highest endorsement for 

both grades 7 and 8 was the “Talked About” item, with 26% and 23% endorsements, 

respectively. Within a grade, all six items had similar item endorsement rates. In other words, 

no one item had a significantly higher endorsement rate than the others. The overall item 

endorsement varied from grade to grade. The average item endorsement was 30%, 20%, and 

17% for grades 6, 7, and 8, respectively. This decrease in the observed mean item 

endorsement was as expected because studies have shown that students experienced more 

peer victimization in grade 6 relative to grades 7 and 8. 

Table 3.2 presents the means and standard deviations for the three time-varying 

covariates (depression, social anxiety, and school safety) and the two distal outcomes (social 

worries and physical symptoms) that are included in the analysis. The mean values of the 

time-varying covariates are not significantly different over time, although they do seem to be 

decreasing.  
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Table 3.2. Covariates summary for grades 6, 7, and 8 and high school distal outcomes 

Measure 
Grade 6 

M (SD) 

Grade 7 

M (SD) 

Grade 8 

M (SD) 

Grade 9 

M (SD) 

Depression 0.25 (0.31) 0.24 (0.31) 0.24 (0.30) ** 

Social Anxiety 2.18 (0.76) 1.99 (0.73) 1.84 (0.68) ** 

School Safety 4.27 (0.60) 4.38 (0.61) 3.91(0.38) ** 

Social Worries * * * 1.70 (0.51) 

Physical Symptoms * * * 1.69 (0.49) 

* Variables not included as middle school covariates  
 ** Variables not included as high school distal outcomes 

 
Comments. This step used descriptive statistics to provide useful information about the 

observed data. Before moving to the next step, some important patterns are worth noting. 

First, within a grade, the item endorsements across the six items were in the same general 

range. This implies that no one item had a significantly higher endorsement than the others 

did—a result consistent across all three grades. The mean item endorsement for the 

victimization items decreased over time, which was expected given that victimization has 

been shown to be at its highest in grade 6 relative to the other grades in middle school. 

Nonetheless, even in grade 9, students continued to experience victimization. Further, there 

were no coding or input errors in the data, and there did not appear to be any indication that 

there were systematic missing data problems.  

Step 1: Study Measurement Model Alternatives for Each Time Point 

Step 1 involves the careful selection of a measurement model that accurately captures 

the construct of peer victimization used in this study. In this step, a series of measurement 

models are fit for each grade. The goal is to determine which model provides the best fit and 
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provides meaningful modeling results for each grade. Covariates and distal outcomes are 

included in the measurement model to help provide validity to the chosen model. An 

appropriate measurement model would be one that closely relates to the theoretical 

conceptualization of peer victimization and the results of the model should produce results 

that relate to other known covariates and outcomes in meaningful ways. That is, the selected 

measurement model should fit the data as well as be informative.  

Chapter 2 introduced a series of latent variable models that one can use as a 

measurement model. The available models include ones with either continuous or categorical 

latent variables, as well as models that combine both types of variables. The models 

considered were: factor analysis (FA), latent class analysis (LCA), latent class factor analysis 

(LCFA), and factor mixture analysis (FMA). Each of the potential measurement models was 

fit independently to the data for each of the three grades of data (i.e., grades 6, 7, and 8).  

Comparing Relative Fit of the Measurement Models 

A variety of statistics can be used to assess model fit for latent variable models as 

described in Chapter 2. Eigenvalue plots are used to determine the number of factors in a 

factor analysis. For LCA models, the Bayesian Information Criterion (BIC), (Schwartz, 

1978),10 and the Bootstrap Likelihood Ratio Test (BLRT) have been shown to be the best 

indicators of the number of classes (Nylund, et al., in press). For hybrid measurement 

models (i.e., LCFA and FMA), the BIC, the log likelihood (labeled “logL” in tables), and the 

number of parameters are used to compare the fit of nested or similar models.  

When comparing measurement models, it is important to consider the practical 

implications of the model, not just statistical measures of fit. For example, it is important to 

                                                 
10  The fitted model that has the lowest BIC value is the model that provides the best relative fit. 
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consider how the model parameterizes the construct and if the model estimates describe 

important features about the correlation of the items with each other. Further, it is important 

that the model provide information in line with the substantive theory of the outcome. For 

example, if the solution of a factor analysis provides good fit but the factors are meaningless 

in terms of the understanding of victimization, it may not be a good measurement model.  

It is important to note that mixture models, such as the LCA and hybrid models, are 

susceptible to converging on local, rather than global, solutions (McLachlan & Peel, 2000). 

The consideration of random start values is a way to help avoid this problem. The use of 

random starts is automatic when using Mplus, and the user can specify the number of 

random starts. A large enough set of random starts should be considered to ensure that the 

same likelihood value could be replicated. However, it is possible that even when a large 

number of random starts are specified (e.g., over 600), the models may not be able to 

converge on a stable solution. This could indicate that the model is not replicable. The 

number of random starts needed is important when deciding which measurement model to 

use.  

It is also important to consider how the measurement model will be used in 

subsequent analyses. In longitudinal models, the measurement model defines the outcome 

used for the study of change. The measurement model is one of the most important parts of 

the longitudinal model. The outcome variable in the LTA model relates the observed 

variable to the larger longitudinal model. Thus, it is important to assess the stability of the 

measurement model over time and weigh the difficulties stemming from the complexity of 

the model against the increased amount of information the model provides about the 

outcome. The use of the hybrid latent variable models considered in this dissertation are not 
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commonly seen in the application of LTA in the literature, but are important because hybrid 

latent variable models may aid in more accurately describing a given construct.  

Deciding on the Measurement Model 

For each grade in the analysis, several measurement models were considered. For 

each type of model (i.e., LCA, LCFA, and FMA), the best fitting model was selected, and 

then the best fitting models across types were compared to determine which model should 

be the measurement model. It is possible that there is a not clear better fitting model for a 

given grade. When that occurred, it was noted and results from that grade were compared to 

the results from the other two grades to see if there was consistency across time points that 

could aid in the selection of the measurement model.  

Grade 6 measurement model. Table 3.3 presents the model fit results for the grade 6 

measurement models. Exploratory Factor Analysis (EFA) results indicated that a one-factor 

model fit the data based on eigenvalues and the interpretability of the solution (results not 

presented here). The factor analysis solution presented in Table 3.3 was based on a one-

factor model estimated in a confirmatory factor analysis (CFA) framework so that the log 

likelihood and BIC values could be obtained for model comparison. Three LCA models that 

varied in the number of classes were estimated. The LCA models considered had 2-, 3-, and 

4- classes. Based on the LCA results presented in Table 3.3, the lowest BIC value of the 

LCA models was for the 3-class model (BIC = 11,277.2). The nonsignificant p-value of the 

BLRT for the 4-class model indicated that the addition of one class to the 3-class model did 

not significantly improve model fit. Thus, the 3-class model was the best fitting of the LCA 

models considered (indicated by bolded text in Table 3.3) 
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Table 3.3. Factor analysis, latent class analysis, latent class factor analysis, and factor 
mixture analysis measurement model results for grade 6 (N = 1,900) 

Model Log L BIC 
No. of 

parameters 
BLRT 

FA, 1f -5572.17 11234.92 12 * 

LCA, 2c -5618.92 1133.62 13 0.00 

LCA, 3c -5563.10 11277.26 20 0.00 

LCA, 4c -5548.45 11300.75 27 0.35 

LCFA 1f, 2c -5618.92 11336.20 13 * 

LCFA 1f, 3c -5572.20 11257.70 15 * 

LCFA 1f, 4c -5570.29 11268.91 17 * 

FMA, 1f, 2c -5553.33 11250.11 19 * 

FMA, 1f, 3c -5542.19 11280.71 26 * 

Note. FA = Factor analysis, LCA = Latent class analysis, LCFA = Latent class factor analysis, 
and FMA = Factor mixture analysis. 1f = one factor, 1c = one class 
*Indicates BLRT was not available for the model 
 

The last two types of models considered were the hybrid latent variable models: the 

LCFA and the FMA. Three LCFA models were considered, one-factor models that had 2, 3, 

and 4 classes. Two FMA models were considered, models that had one factor but had two 

and three classes. Comparing the 3- and 4-class LCFA models that have somewhat close 

values on the fit indices, the two-point increase in the log likelihood value for the two 

parameters increase was not impressive, and the BIC was lower for the 3-class model. 

Together, this information indicates that the 3-class model was the best fitting model of the 

considered LCFA models.11 Results for the two FMA measurement models are included in 

Table 3.3, which indicates that the model with one factor and 2 classes is superior12. There is 

an 11-point decrease in the log likelihood value with the 7-parameter increase between 2- 

                                                 
11 LCFA models that included more than one factor were explored; however, the likelihood value was not 
replicated in the random start exploration, even after a very large number of random starts were specified (i.e., 
750 random starts). Further, the estimated model based on the best likelihood produced a solution with 
parameter estimates that were interpretable. These models were not included in the table.  
12 Though there are many FMA models that range in flexibility and specification, only one FMA model is 
considered in this exploration.  
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and 3-class FMA models. However, the BIC indicates that the FMA model with 2-classes 

fits better. Thus, of the hybrid models, the 3-class LCFA and the 2-class, 1-factor FMA are 

the best fitting models of their respective types. 

Having decided on the best model within each type of model considered, the next 

step was to decide on the best measurement model for grade 6 by comparing across model 

types. Considering models identified as best fitting for each type, similar model fit 

comparisons were made. The models that were compared were the 1-factor model, the 3-

class LCA model, the 3-class LCFA, and the 2-class FMA. 13 The highest value of log 

likelihood was for the 1-factor, 2-class FMA and the lowest value of BIC was for the 1-

factor FA model. The most natural comparison model to the 1-factor FA is the LCA model. 

While the log likelihood value for the 3-class LCA is close in value to the 1-factor FA, the 

BIC indicates that the FA model is preferred because the LCA model estimates more 

parameters. Neither the FA nor the 3-class LCA models have any significant bivariate or 

response pattern residuals (obtained using Tech10 in Mplus) and provide about the same 

relative fit.  

The next best fitting model was the 1-factor, 2-class FMA model. The results of this 

model used a large number of start values and the solution was not easily interpretable. 

Specifically, the factor loadings were nonsensical where all items had positive loading and 

one had a negative loading. This was a result not seen in the one-factor FA. Thus, even 

though the FMA model fit indices indicated it was the best fitting of the hybrid models, 

there were concerns about the stability and interpretability of the results.  

                                                 
13 When comparing fit of a several models, a model that is thought to be relatively well-fitting model is one that 
has a high log likelihood value (i.e., closer to zero) and a low BIC value, relative to the values of the other 
models. 



 74 

In sum, a series of measurement models were explored for grade 6. The best fitting 

model for each type was identified, and then the types were compared. The BIC indicated 

that the 1-factor FA model fit the best followed by the FMA model. The results of the FMA 

were not interpretable and the results may not be stable. Comparing the 1-factor FA and the 

3-class LCA model in terms of the number of standardized residuals, there was not a 

significant difference in these models. As a result of this and close values on the other fit 

indices, the 3-class LCA model was preferred over the FA model since it provided 

classifications that can be used to study transitions in victimization. 

Grades 7 and 8 measurement models. The process used to identify an appropriate 

measurement model was described in detail for grade 6, but because similar decisions were 

made for grades 7 and 8 the discussion is abbreviated. The same set of possible 

measurement models were fit for each grade, and model fit information is included in Tables 

3.4 and 3.5, for grades 7 and 8, respectively.  
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Table 3.4. Factor analysis, latent class analysis, latent class factor analysis, and factor 
mixture analysis measurement model results for grade 7 (N = 1,714) 

Model LogL BIC 
No. of  

parameters 
BLRT 

FA, 1f -4227.28 8543.92 12  * 

LCA, 2c -4253.51 8603.82 13 0.00 

LCA, 3c -4221.84 8592.62 20 0.02 

LCA, 4c -4209.33 8619.71 27 0.19 

LCFA, 2c, 1f -4253.51 8603.82 13 * 

LCFA, 3c, 1f -4227.90 8567.49 15 * 

LCFA, 4c, 1f ** ** ** **  

FMA, 1f, 2c -4211.45 8564.39 19 * 

FMA, 1f, 3c -4197.50 8588.62 26 * 

Note. FA = Factor analysis, LCA = Latent class analysis, LCFA = Latent class factor analysis, 
and FMA = Factor mixture analysis. 1f = one factor, 1c = one class 
*Indicates the BLRT was not available for the model 
**Model results not obtained because the model did not converge 
 

Considering the best-fitting models for each type of model, the results for grade 7 

were similar to those observed for grade 6. The 1-factor FA and the FMA models seem 

slightly superior to the LCA models. The slight improvement in the log likelihood of the 

FMA model compared to the LCA model indicates there is likely no need for the within-

class variation that the FMA allows. As with grade 6, a large number of random starts were 

needed for both FMA models to converge, but the log likelihood values were not replicated 

for either model. Comparing the fit of the FA and LCA models as done for grade 6, there 

was no difference in the number of significant standardized bivariate residuals, and only a 

slight different in terms of the response pattern residuals. Specifically, the FA model had 2 

significant response pattern residuals while the LCA only had one. As a result of these 

models being similar in terms of fit, the 3-class LCA model was deemed the most reasonable 



 76 

for grade 7, since it classifies students into latent classes that provide a clear way to study 

transitions. 

Table 3.5. Factor analysis, latent class analysis, latent class factor analysis, and factor 
mixture modeling measurement model results for grade 8 (N = 1,564) 

Model LogL BIC 
No. of 

parameters 
BLRT 

FA, 1f -3315.87 6720.00 12  * 

LCA, 2c -3366.94 6829.50 13 0 

LCA, 3c -3314.93 6776.96 20 0.02 

LCA, 4c -3300.95 6800.48 27 0.22 

LCFA, 2c, 1f -3366.94 6829.51 13 * 

LCFA, 3c, 1f -3316.59 6743.51 15 * 

LCFA, 4c, 1f ** ** **  ** 

FMA, 1f, 2c -3291.36 6722.47 19 * 

FMA, 1f, 3c -3298.18 6787.59 26 *  

Note. FA = Factor Analysis, LCA = Latent Class Analysis, LCFA = Latent Class Factor 
Analysis, and FMA = Factor Mixture Models; 1f = one factor, 1c = one class 
*Indicates BLRT was not available for the model 
**Model results not obtained because the model did not converge 
 

Results for the measurement models considered for grade 8 are presented in Table 

3.5. As with the results from the grade 7, the hybrid models provided a better fit to the data 

based on the log likelihood values, but the results required many random starts to converge 

on a stable solution. The FMA model again used many random starts and the likelihood 

value was not replicated. Similar to the other grades, the two most compelling measurement 

models for grade 8 were the 1-factor FA model and the 3-class LCA model. Comparing the 

FA and the LCA models, there were no significant standardized or response pattern 

residuals for either model. Thus, the 3-class LCA model was deemed the most reasonable 

among the models considered because it provides classification for studying transitions. The 
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3-class LCA model solution for grade 8 was similar to 3-class LCA solutions for the other 

grades.   

Deciding on the appropriate measurement model. As noted, when deciding on a 

measurement model in longitudinal data analysis, things to consider involve not only the 

statistical indicators of how well the model fits the data, but also the interpretability of the 

results and how the solution will be used in subsequent models. While the FMA and LCFA 

models provided better fit in terms of the statistical indices, the instability in these models 

over time called into question how replicable the solutions were and how necessary the 

hybrid models were in terms of capturing important aspects of the construct for this 

particular dataset. Again, when comparing the LCA and LCFA models, there was little 

improvement in fit, indicting that the within-class variance provided by the factor in LCFA 

is not needed.  

The 1-factor FA model and the 3-class LCA model provided relatively similar fit in 

terms of the statistical indices and neither resulted in any significant bivariate residuals. If the 

FA model were used, it would provide a continuum of victimization while the LCA solution 

provides classification into distinct classes (i.e., groups). Previous studies of victimization 

identify groups of students based on victimization and compare student experiences across 

the groups. The LCA solution provides a way to classify students based on their 

victimization experiences, but instead uses a model based way to create the groups. Further, 

the emergence of the three latent classes over time provides a way study victimization 

experiences over time using transition analysis. In this application, a factor analysis model 

provides a comparable model fit to the LCA model and could provide a meaningful way to 
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describe victimization if the goal was to describe a continuum of victimization. The LCA 

solution is the one preferred for the current application. 

In other applications, the LCA model may not have been chosen as the 

measurement model. The results will vary based on the dataset, the type, and the number of 

items used, and the construct being studied. In another application, the hybrid models could 

provide better fit and reasonable solutions relative to the other models considered. Further, 

it is possible to use different measurement models over time, an LTA modeling extension 

not commonly seen in the literature. Further, even if LCA is used at each time point, it is not 

necessary that the same number of classes may emerge over time. These models are possible 

extensions of the model, though not commonly explored.  

Exploring the 3-class LCA Solution 

Having decided on a reasonable measurement model across all grades, the next step 

is to see if the results can be validated using other criteria. Concurrent and predictive validity 

are explored using variables with theoretically supported relationships with peer 

victimization. Relationships with the latent classes that reflect substantive theory about peer 

victimization help to provide validity to the latent classes. Before validity is explored, it is 

important to interpret the LCA solutions and ensure that the classes are meaningful.  

Interpreting the classes. For LCA models, conditional item probabilities are used to 

attach substantive meaning to the latent classes. These values are the probability of 

endorsing an item for individuals within a given class. Much like using factor loadings to 

attach a name to factors in factor analysis, the conditional item probabilities can be used to 

attach a label to the classes. Conditional item probabilities are displayed graphically using 

item-probability plots.  
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Figure 3.1 displays item-probability plots for the 3-class solution for grades 6, 7, and 

8. Along the x-axis of each plot are the six peer victimization items. The y-axis represents the 

probability of endorsing a given item. The top plot of Figure 3.1 presented the grade 6 

results. The three lines, called profiles, correspond to the three classes in the LCA solution 

and the values are the conditional item probability for each of the six items across the three 

classes. Looking at the grade 6 plot, the top profile (plotted with diamonds), which 

represents 19% of the sample, indicates that the individuals in this class had a high 

probability of endorsing all the victimization items—not just one or two of the items. Thus, 

this class is the “victimized” class. The middle line (plotted with squared), which represented 

29% of the sample, indicates a moderate probability of endorsing the victimization items. 

This class is the “sometimes-victimized” class. The bottom line (plotted with triangles), 

which represented 52% of the sample, indicates a low probability of endorsing the six 

victimization items and is the “nonvictimized” class.  
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Grade 8 (N = 1,564) 
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Figure 3.1. Conditional item probability plots for the 3-class LCA by grades 6, 7, and 
8. Class size information is in the legend. Note: VI class = victimized class, SV class 
= sometimes-victimized class, NV class = nonvictimized class. 
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When looking across grades 6, 7 and 8, one sees similar profiles. Specifically, two 

extreme classes consistently emerged: a victimized class with a high probability of endorsing 

all of the items and a nonvictimized class that had a low probability of endorsing all of the 

victimization items. While the shape of the sometimes-victimized class changed a little over 

time, it remained clearly distinct from the other two. Thus, while the shape varies slightly in 

terms of the mean endorsement of two or three of the items, the sometimes-victimized class 

was a meaningful class that remained relatively consistent over time compared to the other 

victimization classes. 

Table 3.6 presents the conditional item probability values for the three victimization 

classes for grades 6, 7, and 8. These values represent the mean probability of endorsement 

for the students in a given class and are used to create the item probability plots in Figure 

3.1. As noted before, there were similar patterns across the three grades, so general trends 

can be noted without discussing a specific grade. The conditional item probabilities for the 

victimized class (first column in Table 3.6) ranged between 0.98 and 0.75. The individuals in 

the sometimes-victimized class, represented by the middle column in Table 3.6, had item 

probabilities ranging from 0.57 to 0.11. The individuals in the nonvictimized class, 

represented by the far right column, had low conditional item probabilities that ranged 

between 0.09 and 0.02. 
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Table 3.6. Conditional item probabilities for the 3-class LCA solution by grades 6, 7, 
and 8 

   Victimization Classes 

  

Victimized  
Sometimes-
victimized  

Non 
victimized    Victimization Item 

Grade 6 Bad Names 0.85 0.58 0.08 

N=1,900 Talked About 0.74 0.51 0.07 

 Picked On 0.81 0.39 0.03 

 Hit and Pushed 0.76 0.17 0.03 

 Things Taken/Messed Up 0.79 0.31 0.09 

 Laughed At 0.86 0.36 0.06 

    

Victimized  
Sometimes-
victimized  

Non 
victimized      

Grade 7 Bad Names 0.76 0.59 0.05 

N=1,714 Talked About 0.69 0.53 0.09 

 Picked On 0.82 0.26 0.03 

 Hit and Pushed 0.68 0.12 0.05 

 Things Taken/Messed Up 0.68 0.29 0.05 

  Laughed At 0.75 0.38 0.03 

    

Victimized  
Sometimes-
victimized  

Non 
victimized      

Grade 8 Bad Names 0.90 0.48 0.04 

N=1,564 Talked About 0.88 0.50 0.08 

 Picked On 0.91 0.31 0.01 

 Hit and Pushed 0.73 0.22 0.02 

 Things Taken/Messed Up 0.81 0.28 0.03 

  Laughed At 0.98 0.38 0.04 

 

Investigating item patterns. Another way to understand the classes that emerge from 

LCA is to look at the observed response pattern of an individual in each of the victimization 

classes. This is achieved by using posterior probabilities to assign each individual to one of 

the victimization classes and then exploring the response patterns for those classified in each 

of the three classes. Table 3.7 includes summary tables for each class across grades 6, 7, and 
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8. These tables display information about the profiles that comprise each of the victimization 

classes. For each profile, the observed response patterns for each class is displayed (1 = 

endorsed the item)14 and is the probability of individuals who exhibited a given pattern to be 

in each of the three victimization classes (i.e., P (VI) = probability of individuals with the 

given profile to be in the victimized class). Also included is the frequency of each of the 

patterns and the total number of items endorsed by each pattern (i.e., a sum of items with a 

“1” for each pattern). 

                                                 
14 For the sake of clarity in the tables, grade 6 profiles with frequencies over 15 are included in the table. For 
grades 7 and 8, profiles with frequencies over 10 are included in the tables. 
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Table 3.7. Item response patterns for each victim class, presented by grade 
Grade 6 
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VI 1 1 1 1 1 1 0.98 0.02 0.00 96 6 

 1 1 1 1 0 1 0.93 0.07 0.00 31 5 

 1 1 1 0 1 1 0.78 0.22 0.00 25 5 

 1 1 0 1 0 1 0.77 0.23 0.00 22 4 

 1 0 1 1 1 1 0.93 0.07 0.00 22 5 

 1 1 0 1 1 1 0.93 0.07 0.00 22 5 

 1 1 1 1 1 0 0.79 0.21 0.00 16 5 

 0 1 1 1 1 1 0.90 0.10 0.00 13 5 

  1 0 0 1 1 1 0.76 0.24 0.00 12 4 

SV 1 1 0 0 0 0 0.01 0.86 0.13 43 2 

 0 0 1 0 0 0 0.00 0.67 0.33 32 1 

 1 0 1 0 0 0 0.01 0.95 0.04 28 2 

 0 0 1 0 1 0 0.01 0.93 0.06 25 2 

 0 1 0 0 1 0 0.01 0.79 0.20 25 2 

 1 1 1 0 0 0 0.05 0.94 0.00 25 3 

 1 1 1 0 0 1 0.46 0.54 0.00 22 4 

 1 1 0 0 0 1 0.17 0.82 0.01 20 3 

 1 0 1 0 1 1 0.45 0.55 0.00 19 4 

 1 0 0 0 1 0 0.01 0.82 0.17 18 2 

 1 0 0 0 0 1 0.04 0.82 0.14 17 2 

 1 0 0 0 1 1 0.16 0.82 0.02 17 3 

 1 1 0 0 1 1 0.47 0.53 0.00 17 4 

 0 1 1 0 0 0 0.01 0.95 0.05 15 2 

 1 1 0 0 1 0 0.05 0.93 0.02 15 3 

NV 0 0 0 0 0 0 0.00 0.05 0.95 688 0 

 1 0 0 0 0 0 0.00 0.39 0.61 86 1 

 0 1 0 0 0 0 0.00 0.34 0.66 75 1 

 0 0 0 0 1 0 0.00 0.27 0.73 67 1 

 0 0 0 0 0 1 0.00 0.31 0.69 55 1 

  0 0 0 1 0 0 0.00 0.30 0.70 25 1 
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Table 3.7 (cont.). Item response patterns for each victim class, presented by grade 
Grade 7 
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VI 1 1 1 1 1 1 0.98 0.02 0.00 39 6 

 1 1 1 0 0 1 0.63 0.37 0.00 23 4 

 1 1 1 0 1 1 0.88 0.12 0.00 18 5 

 1 1 1 1 0 1 0.94 0.07 0.00 12 5 

  1 0 1 1 1 1 0.93 0.07 0.00 12 5 

SV 1 1 0 0 0 0 0.02 0.86 0.12 40 2 

 0 0 1 0 0 0 0.01 0.64 0.35 26 1 

 0 1 0 0 0 1 0.03 0.83 0.14 19 2 

 1 0 1 0 0 0 0.04 0.94 0.03 16 2 

 0 0 1 0 1 0 0.03 0.93 0.04 16 2 

 1 1 0 0 1 1 0.47 0.53 0.00 16 4 

 1 0 0 0 1 0 0.02 0.91 0.07 15 2 

 1 1 0 0 0 1 0.17 0.82 0.01 15 3 

 0 0 0 0 1 1 0.03 0.89 0.08 14 2 

 1 0 0 0 0 1 0.04 0.90 0.05 13 2 

 0 1 1 0 0 1 0.23 0.77 0.00 12 3 

 1 1 0 0 1 0 0.09 0.90 0.01 11 3 

 0 0 1 1 0 0 0.06 0.85 0.09 10 2 

 1 1 1 0 0 0 0.16 0.84 0.00 10 3 

  1 1 1 0 1 0 0.45 0.55 0.00 10 4 

VI 0 0 0 0 0 0 0.00 0.04 0.96 830 0 

 0 1 0 0 0 0 0.00 0.25 0.75 101 1 

 1 0 0 0 0 0 0.00 0.48 0.52 63 1 

 0 0 0 0 1 0 0.00 0.37 0.63 48 1 

 0 0 0 1 0 0 0.00 0.18 0.82 41 1 

 0 0 0 0 0 1 0.00 0.45 0.55 38 1 

  * 0 0 0 0 0 0.00 0.08 0.92 11 0 
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Table 3.7 (cont.). Item response patterns for each victim class, presented by grade 
Grade 8 
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VI 1 1 1 1 1 1 0.99 0.02 0.00 42 6 

 1 1 1 0 1 1 0.87 0.13 0.00 14 5 

  1 1 1 1 0 1 0.86 0.14 0.00 11 5 

SV 1 1 0 0 0 0 0.00 0.88 0.12 29 2 

 1 0 0 0 0 1 0.00 0.90 0.10 20 2 

 0 0 1 0 0 0 0.00 0.57 0.43 18 1 

 0 1 0 0 0 1 0.00 0.84 0.16 14 2 

 1 1 0 0 0 1 0.03 0.96 0.01 14 3 

 0 1 0 0 1 0 0.00 0.80 0.20 12 2 

 1 1 1 0 0 0 0.01 0.99 0.00 12 3 

  1 1 1 0 0 1 0.39 0.61 0.00 11 4 

NV 0 0 0 0 0 0 0.00 0.03 0.98 883 0 

 0 1 0 0 0 0 0.00 0.24 0.76 88 1 

 1 0 0 0 0 0 0.00 0.37 0.63 52 1 

 0 0 0 0 0 1 0.00 0.30 0.70 44 1 

 0 0 0 0 1 0 0.00 0.25 0.75 34 1 

 0 0 0 1 0 0 0.00 0.25 0.75 24 1 

  * 0 0 0 0 0 0.00 0.05 0.95 15 0 

 
The item response patterns presented in Table 3.7 show notable patterns. Students 

classified in the victimized class were likely to endorse either all six victimization items or at 

least 5 of the 6 items. If a student in the victimized class did not endorse all six of the items, 

that student was most likely not to have endorsed the “hit and pushed” or “things 

taken/messed up” items. Students in the nonvictimized class mostly endorsed either none or 

just one of the six victimization items. If a student in the nonvictimized class endorsed an 

item, that student was most likely to endorse the “bad names” or “talked about” items. 
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Students in the sometimes-victimized class were likely to endorse between two and 

four of the six victimization items. If students in this class endorsed two or three items, the 

items most likely to be endorsed were the “bad names,” “talked about,” or “picked on” 

items. The profiles observed in the sometimes-victimized class support the fact that there is 

no one clear pattern of endorsement for this class and that the class identifies students who 

endorse some of the victimization items. 

Victimization class size changes. While the three item profile plots in Figure 3.1 remained 

remarkably consistent across time, the size of the victimization classes did change. Table 3.8 

presents the class proportions of the three victimization classes for grades 6, 7, and 8.  

Table 3.8. Percent of students in each victimization class in grades 6 through 8 based 
on cross-sectional LCA without covariates 

Classes Grade 6 Grade 7 Grade 8 

 
Victimized 19% 13% 6% 

 
Sometimes- 
Victimized 29% 20% 23% 

 
Nonvictimized 52% 67% 70% 

 

Comparing the class sizes presented in Table 3.8, there are a few things to note. First, 

the relative class ordering by size remains the same. That is, the victimized class was 

consistently the smallest, the sometimes-victimized class was the next smallest, and the 

nonvictimized class was always the largest and the majority. In addition, the size of the 

victimization class decreased from 19% in grade 6 to 6% in grade 8, which indicated that the 

victimized class decreases in size as students move up the grades. At the same time, the 

nonvictimized class increased from 52% in grade 6 to 70% in grade 8. Thus, based on the 
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sizes of the classes presented in Table 3.8, it could be hypothesized that in middle school 

students moved from the victimized class to the nonvictimized class as they moved from 

grade 6 to grade 8. While these results were based only on the cross-sectional analysis, they 

can be used to describe the type of movement among the three victimization classes over 

time.  

Covariates in the measurement model. Although the selection of the measurement model 

was considered without covariates, the inclusion of covariates in the LCA model was used to 

validate the classes that emerged. Covariates were included, and results indicate meaningful 

relationships in the direction and significance that, as expected, loaned support to the validity 

of the classes. If, for example, a covariate was included and the direction and significance of 

the covariate’s influence was contradictory or nonsensical to theories about how the 

covariate and outcomes related, this could indicate that the model used was not correct, or 

that the classes that emerged were not meaningful. Figure 3.2 displays the LCA regression 

model diagram, including the covariates of gender and students’ self-reports of school safety. 

The figure also displays the proximal distal outcome used as further validation, which in this 

application is the variable measuring student’s depressive feeling in the fall of the following 

academic year.  
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Figure 3.2. Latent class regression model diagram with covariates (female and school 
safety) and distal outcome (depressive feeling for the fall of the following school 
year). 

 

LCA regression models for each grade were analyzed independently. There are 

several ways to specify LCA models that include covariates, which vary in the way the 

covariates influence the formation of the classes. In this study, we are interested in validating 

the victimization classes that emerged based on analysis using only the six peer victimization 

items. Thus, the LCA models with covariates had fixed class-specific item probabilities, 

where the item probabilities values were fixed at values from the 3-class LCA model without 

covariates. This was done to ensure that the covariate values and distal outcome means were 

estimated based on the three victimization classes described earlier. This method of fixing 

the item probabilities is not used in the subsequent longitudinal analysis.  

Results indicated that covariate and distal outcome relationships emerged as 

expected for the three victimization classes. Table 3.9 includes the logistic regression 

coefficients, standard errors, z - score, p - value and odds ratio values for the independent 

analysis of the three grades in this study, where the nonvictimized class is the reference 

group. Thus, two covariate comparisons were made: (1) the likelihood of being the 
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victimized class compared to the nonvictimized class and (2) the likelihood of being the 

sometimes-victimized class compared to the nonvictimized class.  

 Results indicated that in grade 6, male and female students were equally likely to be 

in the three victimized classes (i.e., the regression coefficients were not significant). 

However, for grades 7 and 8, there was a significant gender effect when comparing the 

nonvictimized to the victimized class. The gender logistic regression coefficient for grade 7 (-

0.542, p < .05) indicated that being male instead of female increased the odds of being in the 

victimized class relative to the nonvictimized class. The odds ratio, calculated by taking the 

exponential of the logistic regression coefficient, can be used as another way to describe this 

result (OR = 0.58). The significant gender effect comparing the odds of being in the 

victimized and nonvictimized classes was consistent for both grades 7 and 8. However, there 

was not a significant gender coefficient comparing the sometimes-victimized class to the 

nonvictimized class. This result indicated that male and female students were equally likely to 

be in the sometimes and nonvictimized classes across all grades. The fact that there was no 

gender difference in grade 6 when comparing the victimized to the nonvictimized classes, 

but that male students were more likely to be in the victimized class in grades 7 and 8, may 

be an indication that students who transitioned out of the victimized class were mostly 

female.  
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Table 3.9. Logistic regression coefficients and odds ratio for 3-class model with 
school safety and gender (males = 0, females = 1) as a covariate using the 
nonvictimized class as the comparison group 

Grade 6 Effect Coefficient S.E.    Z P-value 
Odds 
Ratio 

Victimized Female -0.37 0.21 -1.73 0.08 0.69 

  Safety -2.18 0.19 -11.78 0.00 0.11 

        

Sometimes-victimized  Female  0.00 0.16 0.01 0.99 1.00 

  Safety -1.42 0.18 -8.14 0.00 0.24 

Grade 7            

Victimized Female -0.54 0.14 -3.86 0.00 0.58 

  Safety -2.10 0.21 -10.09 0.00 0.12 

        

Sometimes-victimized  Female  0.20 0.18 1.09 0.28 1.22 

  Safety -1.22 0.20 -6.12 0.00 0.29 

Grade 8            

Victimized Female -0.41 0.12 -3.50 0.00 0.67 

  Safety -1.10 0.25 -4.48 0.00 0.33 

        

Sometimes-victimized  Female -0.04 0.28 -0.14 0.89 0.96 

    Safety -1.67 0.23 -7.21 0.00 0.19 

 
School safety had a similar influence among the three victimization classes when 

compared across all three grades. Specifically, there were significant school safety effects for 

both the victimized and sometimes-victimized classes compared to the nonvictimized class. 

The school safety logistic regression coefficient for grade 6 (-2.175, p < .001) indicated that 

students with higher feelings of school safety had lower odds of being in the victimized class 

instead of the nonvictimized class. Similarly, the logistic regression coefficient (-1.422, p < 

0.001) for the sometimes-victimized class compared to the nonvictimized class indicates that 

students with higher feelings of school safety had lower odds of being in the sometimes-

victimized class instead of the victimized class. This indicated that students in the 



 92 

nonvictimized class were more likely to feel safer at school. Table 3.9 shows this pattern 

remained consistent across all middle school grades.  

Students’ depressive feelings (i.e., depression) were included as a proximal distal 

outcome in the LCA model. The impact of a distal outcome was included by allowing the 

means of the students’ depression score to vary across the three victimization classes. Since 

the data come from a larger longitudinal study, students’ depressive symptoms that were 

measured in the subsequent academic semester (i.e., fall of the next year) were available. This 

allowed for the exploration of mean differences in depressive feelings across the 

victimization classes.  

Table 3.10. Mean depressive feelings for the three victimization classes 

Class Fall of Grade 7 Fall of Grade 8 

Victimized 0.40 0.41 

Sometimes-victimized 0.26 0.31 

Nonvictimized 0.17 0.16 

Note. Class membership was determined with gender and school safety as covariates one 
wave prior to the measurement of depressive feelings. 
 

The results in Table 3.10 indicate that, in fact, students in the victimization class did 

have higher depression means in the following semester than those in the less frequently 

victimized classes. The estimated depression means followed an expected pattern, where 

students in the victimized class reported the highest level of depressive feelings, the students 

in the sometimes-victimized class reported the next highest level of depressive feelings, and 

the students in the nonvictimized class reported the lowest level of depressive feelings. 

Exploring differential item functioning. Before settling on the 3-class LCA model and 

moving onto the next phase of the analysis, the last step is to check for differential item 

functioning (DIF). DIF in the LCA setting implies that two students in the same 
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victimization class would have differential item endorsement probabilities. For example, in 

the context of peer victimization, DIF could result from female students in the victimized 

class having higher probability of endorsing the “talks about” item than male students. DIF 

in LCA is explored by allowing a direct effect of the covariate onto an item. The most 

reasonable source of DIF for this study would be gender. Figure 3.3 displays an LCA model 

with a direct effect of gender on an item.  

 

Figure 3.3. LCA model with gender as a covariate that has a direct effect on item (u2) 
and on the latent class variable used to explore differential item functioning. 

 
A series of models were fit to explore the possibility of DIF in this example. 

Specifically, at each time point DIF was explored for two items, the “talks about” and “hits 

and pushed” items. For each of these items, inconsistent results emerged. For the “talks 

about” items, there was evidence of DIF in grades 6 and 8, but not 7. This indicated that in 

the sometimes-victimized class, females were more likely to have endorsed the “talks about” 

item than boys. This was not consistent across all grades, however. Results for the “hit and 

pushed” victimization item were also inconsistent across grades. The main findings were that 

boys in the sometimes-victimized and victimized classes were more likely to endorse the 
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item than girls in grade 6, but in grades 7 and 8 boys in the sometimes-victimized class were 

more likely to endorse it than girls in that class. 

There was evidence of DIF in these two victimization items, though their effect was 

inconsistent across grades. If there were a consistent signal of DIF for a given item across 

time, it would be important to incorporate it in the longitudinal model. In this setting, given 

the inconsistency of the effect, DIF was not incorporated in the LTA model in subsequent 

steps. It is worthwhile to explore the effect of ignoring DIF in these models.  

Comments. Step 1 is a very important stage in building the longitudinal model. The 

accurate selection of a measurement model is integral in modeling change in a construct. 

Several latent variable models were considered as potential measurement models for the six 

peer victimization items. Considering a number of statistical fit indices and practical 

implications, the LCA model was identified as the most practical solution for this given 

dataset. Two covariates and a distal outcome variable were included in the cross-sectional 

LCA models to explore validity of the three victimization classes that emerged. Across all 

three grades, the 3-class LCA model was identified as the most practical and understandable 

selection for the measurement model. Remarkably, the three classes were very similar in 

structure. The three classes that emerged differed in their probability of endorsing all six 

peer victimization items, thus differentiating victimization experiences based on degree 

rather than type. 

 Relationships with covariates and distal outcomes that emerged were congruent with 

what would be expected of victimization classes of this sort. Taken together, these results 

provide support for the validity of the classes as meaningful classes that describe students’ 

victimization experiences. Last, the possibility of DIF was explored at each time point for 
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two of the items. There was evidence of DIF for the items, but because of inconsistent 

results across time, the DIF will not be included in the next analysis steps. Since LCA is the 

selected measurement model, the longitudinal model will describe the changes students make 

in their victimization classes over time.  

Step 2: Explore Transitions Based on Cross-Sectional Results 

 After the selection and validation of the measurement model, the next modeling step 

involves using cross-sectional results to describe change that occurs among the latent classes. 

Using modal class assignment based on the LCA posterior probabilities, individuals were 

assigned to one of the three classes. This was done for grades 6, 7, and 8, and class 

membership information was merged across grades to create cross-classification tables. 

These tables were used to describe individual movement among the victimization classes 

over time. Table 3.11 includes the cross tabulations for the two transition points (i.e., grade 6 

to 7 and grade 7 to 8).  

Table 3.11. Preliminary transition tables based on cross-sectional LCA results 

  Grade 7     Grade 8 

Grade 6 VI SV NV  Grade 7 VI SV NV 

VI 0.46 0.31 0.24  VI 0.19 0.43 0.38 

SV 0.18 0.34 0.48  SV 0.05 0.22 0.74 

NV 0.06 0.24 0.70   NV 0.02 0.11 0.87 

Note: VI class = victimized class, SV class = sometimes-victimized class, NV class = 
nonvictimized class 

 

The transition matrices presented in Table 3.11 are very similar to the transition 

matrices estimated by the LTA model. Transition tables based on an LTA model use model 

estimates to create transition tables; the values in the table above are descriptive statistics. 
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These tables are useful for summarizing individual movement in and out of the victimization 

classes that may be observed when estimating the transitions using the longitudinal model. 

Several important patterns emerged from the cross-classification matrices presented 

in Table 3.11. Along the diagonal axis are values that describe stability in victimization status. 

The diagonal values include students who remained in the same modally assigned 

victimization group at adjacent time points. Looking at the first upper left cell of the first 

matrix of Table 3.11, the value of 0.46 can be interpreted as follows: The probability that an 

individual who was in the victimized class in grade 6 remained in the victimized class in 

grade 7 is 0.46. Alternatively, that value can be interpreted as follows: 46% of the students 

who were in the victimized class in grade 6 remained in the victimized class in grade 7. 

The off-diagonal values described movement among the classes. The value of 0.31 in 

the first matrix of Table 3.11 implies that of the students who were in the victimized class in 

grade 6, 31% transitioned into the sometimes-victimized in grade 7. Looking at the two 

transition tables in Table 3.11 shows that when students transition they tend to transition 

into a victimization class with a lower frequency of victimization. This is evident by 

comparing, for example, the transition probabilities of students in the sometimes-victimized 

class in grade 6 who transition out of the sometimes-victimized class. These values indicated 

that of the students who transitioned (i.e., students who did not remain in the sometimes-

victimized class for both grades 6 and 7), 48% transitioned to the nonvictimized class in 

grade 7, while 18% transitioned to the victimized class. The overall pattern indicates that 
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when transitions occur, students were more likely to transition into a class with less 

victimization15. This pattern was observed for both transition points.  

Looking across the matrices presented in Table 3.11, there are some interesting 

patterns. There is more stability for those in the victimized class from grades 6 to 7 than 

those in the victimized class from grades 7 to 8 (i.e., 0.46 compared to 0.19, respectively). 

Students in the sometimes-victimized class are more likely to transfer to the nonvictimized 

class between grades 7 to 8 than to transfer between grades 6 to 7. In general, comparing 

across the matrices in Table 3.11, more stability in victimization is observed for the 

nonvictimized class than for the other classes. Further, even though students show a 

tendency to transition to a class with less victimization between grade 6 and 7, the 

movement is more evident in the transition between grades 7 and 8. 

Measurement Invariance 

As described in Chapter 2, measurement invariance involves equality assumptions to 

be made regarding the relationship between the observed items and the latent variable. In 

this study, exploring measurement invariance involves testing the how reasonable it is to 

assume that the structure of the three victimization classes are similar enough across time to 

be considered the same. As noted, the 3-class LCA solution consistently emerged for each 

grade, and the profiles of the three classes appeared consistent across grades. Formal 

measurement invariance testing, in the form of likelihood ratio tests (LRTs), is used to assess 

statistically the plausibility of measurement invariance. Assuming full measurement 

invariance facilitates straightforward discussions about transitions among the victimization 

classes because the victimization classes are always the same across time. While measurement 

                                                 
15 Note that this sort of summary is only useful when you have an ordering to the classes. 
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invariance implies that the structure of the classes is the same across time, it does not impose 

any restrictions on the size of the class.  

Chapter 2 described several stages for testing measurement invariance that range in 

the amount of invariance assumed. Full measurement invariance assumes that all measurement 

parameters are the same for each of the three classes, across all three grades of data.  

Full measurement noninvariance makes no assumptions about equality of the measurement 

parameter across the three classes and grades. Partial measurement invariance is a middle ground 

between full- and non-measurement invariance, but still involves some invariance 

assumptions. To determine which measurement invariance specification is appropriate, 

models with varying degrees of measurement noninvariance specifications were fit and 

compared using log likelihood ratio tests (LRTs).  

Full measurement invariance. To begin, a model that has complete measurement 

invariance was compared to one with complete measurement noninvariance. Thus, two 

models were estimated, and the LRT results indicated a significant difference in fit between 

the models. Specifically, the model with complete measurement noninvariance (i.e., all the 

measurement parameters differ across time) significantly improved model fit. In this 

application, complete measurement noninvariance implies that all the item probabilities for 

the three classes may be different across time. As seen in the item profile plots of the three 

classes across the grade, the profiles of the classes are remarkably similar, providing evidence 

that some level of measurement invariance assumption could be applied.  

Partial measurement invariance. There are many different partial measurement invariance 

specifications available, especially with three measurement occasions and three classes at 

each time point. For example, one partial invariance model could be one that allows the 
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nonvictimized class to be estimated freely across time while the other two classes are 

invariant (i.e., allowing the structure of the victimization class to be time-specific). Another 

partial invariance model could be one where one item within a class was noninvariant across 

time (i.e., to allow for differential item functioning with respect to time) while all the rest of 

the parameters were held invariant. Because there are so many partial measurement 

invariance specifications possible with respect to the measured items, classes and time 

points, the choice of which models to be chosen should be driven not only by statistical 

evidence that a particular model improves fit, but also that the invariance strategy makes 

sense in the context of understanding peer victimization. Otherwise, there are many 

potential partial invariance strategies that could be tested, which could lead to over testing 

the data.  

Several partial invariance models were specified and compared to the full invariance 

model using LRT methods. The partial invariance models considered were as follows: a 

model that allowed DIF for two items within the sometimes-victimized class across time, a 

model that allowed all the item parameters (i.e., not just one or two as with DIF) to be 

noninvariant for the nonvictimized class while the others were held invariant, and a model 

that allowed the sometimes-victimized class to be noninvariant only in grade 8. While results 

indicated statistical improvement in fit for all of the partial invariance models compared to 

the full invariance model, no model stood out as a better fitting model. In other words, there 

was no one particular partial measurement invariance model that appeared the most 

reasonable among those considered.   

As a result of not finding a clear partial measurement invariance model that made 

both statistical and practical sense, full measurement invariance was assumed. This 
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assumption was supported by the fact that the item profile plots were remarkably similar 

across groups and across time. Further, the covariate and distal outcome results indicated 

consistent relationships for the three classes across all three grades. Ina practical sense, 

assuming full measurement invariance allows meaningful comparisons to be made about the 

classes across time. More research on measurement invariance in LTA models is needed to 

understand the implications of the measurement invariance assumption on the model. 

Comments. This step involved using the cross-sectional LCA results to create cross-

tabulations to summarize movement in and out of the three victimization classes. A decent 

amount of stability in the victimization classes was observed. Further, a consistent pattern of 

change emerged: if a student were to transition, he or she would most likely have 

transitioned into a lower victimization class. This was consistent with the results observed in 

Step 1 when it was noted that the size of the victimization class was decreasing while that of 

the nonvictimized class was increasing. 

The applicability of measurement invariance assumptions was also explored in this 

step. It is important to explore measurement invariance of the classes before imposing 

structure on their relationship across time (i.e., through the autoregressive relationship). 

Despite results indicating an improvement in fit by allowing partial noninvariance, without 

strong support for one particular partial measurement noninvariance model, full invariance 

seems reasonable only given the consistency of the item profile plots across time. The full 

measurement invariance could pose as a potential limitation of the study, because it may 

mask important developmental differences exist but were ignored.  
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Step 3: Explore Specification of the Latent Transition Model without Covariates  

This step is the first one that involves a longitudinal model. First, an unconditional 

Latent Transition Analysis (LTA) model that does not include covariates is considered, a 

logical starting point in estimating a model that has many components. In HLM models, this 

is often referred to as estimating the unconditional growth model (Raudenbush & Bryk, 

2002). This step explores specification issues relating to stationarity of transition probabilities 

and the applicability of a higher order effect.  

Transition Probabilities: Stationary or Not? 

The stationary assumption in LTA modeling relates to the equality of transition 

probabilities across each of the transition points (e.g., grade 6 to 7 and grade 7 to 8). If a 

process is assumed stationary, transition probabilities are constrained to be the same across 

time. In other words, the transition matrices are the same across all the transition points, 

implying that students’ probability of transitioning among the victimization classes remained 

constant throughout middle school. 

Two different LTA models were fit to study if stationary transitions were reasonable. 

One model estimated a transition matrix for each transition point (e.g., one for grade 6 to 

grade 7 and another for grade 7 to grade 8), and a second model constrained the transition 

matrices to be the same across the two transition points. The likelihood ratio test (LRT) 

indicated no significant worsening in fit if stationarity was imposed (χ2 
(df  = 6) = 5.45, p = 0.49). 

In other words, there were no significant differences in the transition probabilities across the 

two transition points, implying that students were equally likely to move out of the 

victimization class into the less frequently victimized classes across the two transition points. 

Table 3.12 displays the transition probabilities for the model with and without stationary 
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transition matrices. While there were some minor differences in the transition probabilities, 

there did not appear to be any particular transition probability that changed substantially 

when imposing a stationarity constraint.  

Table 3.12. Transitions probabilities for the stationary (left panel) and non-stationary 
(right panel) LTA models 

Stationary  Non Stationary 

Grade 7  Grade 7 

Grade 6 VI SV NV  Grade 6 VI SV NV 

VI 0.46 0.40 0.15  VI 0.42 0.41 0.17 

SV 0.06 0.48 0.45  SV 0.05 0.48 0.47 

NV 0.01 0.08 0.91  NV 0.01 0.10 0.90 

         

 Grade 8  Grade 8 

Grade 7 VI SV NV   Grade 7 VI SV NV 

VI 0.46 0.40 0.15  VI 0.52 0.38 0.11 

SV 0.06 0.48 0.45  SV 0.07 0.49 0.44 

NV 0.01 0.08 0.91   NV 0.01 0.06 0.92 

Note: VI class = victimized class, SV class = sometimes-victimized class, NV class = 
nonvictimized class 
 

As pointed out in Chapter 2, the stationarity specification is only relevant for models 

that do not consider covariates, but is included in this chapter as an example of how to test 

for stationarity. Since this application will include covariates and distal outcomes in the 

model, stationarity would not be reasonable. 

Exploring First- and Second-Order Transitions 

In most applications of the LTA model, only first-order effects (i.e., lag-1 effects) are 

considered. This implies that adjacent outcomes are directly related, and nonadjacent 

outcomes are only related indirectly. It is not necessary to limit the relationship of the 

outcomes to be first-order, especially when there is a developmental reason suggesting 

otherwise. Higher-order relationships are possible and allow outcomes to be related in 
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different ways, depending on the number of time points. For example, second-, third-, or 

even higher-order effects are possible when many time points are considered.  

Figure 3.4 displays an LTA model diagram with a first-order (i.e., arrow between C1 

and C2 and between C2 and C3) and a second-order effect (i.e., arrow between C1 and C3). In 

this study of peer victimization, a second-order effect allows for a direct effect of grade 6 

victimization experiences on students’ trajectories. Thus, the second-order effect would 

uncover to what extent grade 8 victimization experiences directly relate to grade 6 

victimization, above the relationship through grade 7. Because there are only three time 

points, the highest order effect possible is a second-order. 

 

Figure 3.4. LTA model with first-order effect (arrow with straight connector lines) 
and a second-order effect (arrow with dashed connector line). 

 
To explore if a second-order effect is relevant in this application, two models were 

fit: an LTA model with an estimated first-order effect and an LTA model with a first- and 

second-order effect. The LRT comparing fit of these two models indicated that the model 

with the second-order transition provided a significantly better fit (χ2 
(df  = 4) = 38.2, p < 0.01). 

A further indication that the second-order effect was relevant in this application is that the 

number of significant bivariate residuals decreased 5% when the second-order effect was 

added. For the sake of pedagogy, Table 3.13 presents the transition probabilities for the first-

C1 C2

 

= 

C3 
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order model as well as the transition probabilities for the model that included a first- and a 

second-order effect. The transition probabilities for the LTA model with the second-order 

are the first-order probabilities, adjusted for the second-order effect.  

Table 3.13. First-order transition probabilities for both the first-order LTA model (left 
panel) and the first- and second-order (right panel) LTA models where the transition 
probabilities are adjusted for the second-order effect 

First-Order Only   First- and Second-Order 

 Grade 7   Grade 7 

Grade 6 VI SV NV   Grade 6 VI SV NV 

VI 0.42 0.41 0.17  VI 0.42 0.37 0.22 

SV 0.05 0.48 0.47  SV 0.06 0.45 0.49 

NV 0.01 0.10 0.90  NV 0.01 0.10 0.89 

     

 Grade 8   Grade 8 

Grade 7 VI SV NV   Grade 7 VI SV NV 

VI 0.52 0.38 0.11  VI 0.48 0.39 0.13 

SV 0.07 0.49 0.44  SV 0.05 0.47 0.48 

NV 0.01 0.06 0.92   NV 0.03 0.08 0.90 

Note: VI class = victimized class, SV class = sometimes-victimized class, NV class = 
nonvictimized class 
 

As expected, when comparing the transition probabilities in Table 3.13 across the 

two models, the major difference between the two models emerges when looking at the 

second transition point (grade 7 to grade 8). The values on the diagonal are smaller than the 

diagonal values in the first-order model because these probabilities are adjusted for the 

lasting effect of victimization that occurs in grade 6. 

Another, perhaps clearer, way to see the impact of the second-order effect on the 

transition probabilities is to look at the relationship between grade 6 victimization 

classification and grade 8 victimization classification. This is achieved by presenting the 

transition matrices for grade 7 to grade 8 according to the classification of the student in 
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grade 6. Table 3.14 includes three grade 7 to grade 8 transition matrices, presented by a 

students’ victimization class in grade 6.  

Table 3.14. Transition matrices for grade 7 to grade 8, presented by victimization 
class in grade 6 based on an LTA model with a second-order effect 

    Grade 8 

Grade 6 Grade 7 VI SV NV 

 VI 0.57 0.34 0.09 

VI Class SV 0.13 0.53 0.34 

 NV 0.16 0.16 0.69 

      

  Grade 8 

 Grade 7 VI SV NV 

 VI 0.21 0.59 0.20 

SV Class SV 0.03 0.52 0.45 

 NV 0.03 0.14 0.83 

      

  Grade 8 

 Grade 7 VI SV NV 

 VI 0.15 0.34 0.51 

NV Class SV 0.01 0.21 0.78 

  NV 0.01 0.04 0.95 

Note: VI class = victimized class, SV class = sometimes-victimized class, NV class = 
nonvictimized class 
 

The transition matrices in Table 3.14 show the impact of grade 6 victimization 

experiences on later victimization. Many comparisons of the transition probabilities in Table 

3.14 highlight the persistent effect of grade 6 victimization, using the transition matrices in 

Table 3.14. For example, there is a markedly higher probability of a student transitioning in 

the VI class in grade 8 from the SV (0.13) or NV (0.16) class in grade 7, if that student was 

in the VI class in grade 6, than there would be if the student was in the SV (both 0.03) or 

NV (both 0.01) classes in grade 6. Also, students who were in the VI class in grade 6 are 
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nearly four times more likely to remain in the VI class if they were in the VI class in grade 7 

(0.57), compared to students in the NV class in grade 8 (0.15). 

Another way to explore the impact that early victimization experiences have on a 

students’ trajectory is to look at the transition probabilities from grade 6 to grade 8, 

collapsing over grade 7. Thus, the values in Table 3.15 describe the probability that a student 

ended up in one of the victimization classes in grade 8 given their victimization class in grade 

6, regardless of the student’s victimization experience in grade 7.  

Consider the value of 0.27 in the transition matrix for the first-order model in Table 

3.15. This value indicates that of the students who were in the victimized class in grade 6, 

27% remained in the victimized class in grade 8, regardless of which victimization class they 

were in during grade 7. This value is based on three possible developmental patterns across 

grades 6, 7 and 8:  (VI, VI, VI), (VI, SV, VI), and (VI, NV, VI). 

Table 3.15. Transition probabilities for grade 6 to grade 8, collapsing over grade 7, 
using an LTA model with only a first-order effect (left panel) and using an LTA 
model with both a first- and second-order effects (right panel) 

First-Order only   First- and Second-Order Effect 

  Grade 8    Grade 8 

Grade 6 VI SV NV  Grade 6 VI SV NV 

VI 0.27 0.37 0.36  VI 0.32 0.37 0.31 

SV 0.06 0.29 0.65  SV 0.04 0.34 0.62 

NV 0.02 0.10 0.88   NV 0.01 0.06 0.93 

Note: VI class = victimized class, SV class = sometimes-victimized class, NV class = 
nonvictimized class 
 

The results in Table 3.15 again show the lasting impact of grade 6 victimization 

experiences on students’ trajectories. Regardless of what happened to those students in grade 

7 (i.e., victimized or not), 93% of the nonvictimized (NV) students in grade 6 remained in 
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the nonvictimized class in grade 8. Considering the other extreme, students who were in the 

victimized class in grade 6 had nearly an equal chance of ending up in any of the three 

victimization classes at grade 8. Comparing the transition matrices presented in Table 3.15, 

all diagonal values, values that describe stability in victimization experiences are higher for 

the second-order model.  

Thus, broadly speaking, if a student has a history of victimization (i.e., was victimized 

in grade 6), that student was more likely to be a victim at a later time point, regardless of 

whether that student experiences a period without being victimized, than those without a 

history of victimization. Further, if a student has an early experience of not being victimized, 

that student is more likely to end up nonvictimized in grade 8, regardless of the student’s 

victimization experience in grade 7. 

Comments. This step explored different model specifications to determine what sort 

of models may be needed in future steps. The stationary assumption was tested for this 

example, and no significant difference in fit between the model that assumed a stationary 

process and the one that did not was found. Regardless of these results, in applications that 

intend to incorporate covariates, a stationary assumption should not be imposed. This is 

because when covariates are included in the model, a stationary change process is not 

reasonable, because the transition probabilities are no longer conditioned only on the 

previous time point, but on the covariates as well. This step was included in the analysis to 

show how stationarity could be explored for LTA models that do not use covariates, or LTA 

models that use multiple groups to explore differences across values of a categorical 

covariate. Finally, a second-order effect was important for this application, implying a lasting 

effect of grade 6 victimization experiences.  
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Exploring each potential model specification is an important step in building the 

larger model, because the specifications directly influence results. Also, exploration of the 

models as a first step, without covariates, is a good rule of thumb because models become 

more complicated when complex covariate relationships are specified.  

Step 4: Include Covariates in the LTA Model 

The inclusions of covariates in the LTA model can describe heterogeneity in the 

developmental process being studied (Humphreys & Janson, 2000). In this step, both 

observed and latent covariates are considered. There are two types of observed covariates 

included in this application, time-varying and time-invariant. The time-varying covariates are 

variables measured repeatedly at the same time as the outcome (e.g., social anxiety, 

depressive feelings, and school safety). The time-invariant covariates are the demographic 

variables that are only measured once (e.g., gender and ethnicity). For both time-varying and 

time-invariant covariates, we can estimate either time-varying or time-invariant effects. A 

time-varying covariate effect allows for the differential impact of a variable over time. For 

example, a time-varying effect of depression on the victimization classes would allow for 

interpretation of whether depression relates to the victimization classes differently over time. 

In this study, both time-varying and time-invariant covariates have time-varying effects.  

A latent covariate is a latent variable that describes unobserved heterogeneity in the 

transitions. This step includes a higher-order latent variable specified as a mover-stayer 

variable. This second-order mover-stayer variable has two classes: one class of students who 

move among the victimization classes, called “movers,” and another class of students who 

remain in their victimization class throughout middle school, called “stayers.” Other 
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restrictions on this higher-order latent variable are possible and allow for different kinds of 

movers and stayers.  

To illustrate the impact of a covariate on transition probabilities, an LTA model with 

a single covariate of gender was estimated. Gender was allowed to have a time-varying effect, 

which implies that for each time point gender was allowed to affect the class variable 

differently. This resulted in an additional two parameters being estimated for gender at each 

time point, one for the victimized and one for the sometimes-victimized class. These 

parameters are used to assess the change in the log odds of being in either the victimized or 

the sometimes-victimized class, compared to the nonvictimized class (the reference class). 

This model was a first-order model that did not assume stationary transition probabilities 

(i.e., the transition probabilities were different for the two transition points).  

Table 3.16. Logistic regression coefficients for LTA model with time-varying gender 
effect with non-stationary transitions and a first-order effect 

Class Effect Coefficient S.E. Z P-value Odds Ratio 

Victimized Female -0.58 0.23 -2.49 0.01 0.56 

Sometimes-victimized Female -0.04 0.18 -0.21 0.84 0.96 

       

Victimized Female -0.18 0.36 -0.50 0.62 0.83 

Sometimes-victimized Female -0.27 0.16 -1.69 0.09 0.76 

       

Victimized Female -0.13 0.29 -0.45 0.65 0.88 

Sometimes-victimized Female -0.22 0.21 -1.05 0.29 0.80 

 
 
 Table 3.16 displays the gender effect estimates for this LTA model. Several 

important points from the above table merit discussion. Comparing the time-varying effects 

of gender across grades, there was, in fact, a time-varying effect. The gender logistic 

regression coefficient for sixth grade (-0.58, p < .001) indicated that being female instead of 
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male decreased the odds of being in the victimized class relative to the nonvictimized class. 

However, this result was not observed for the subsequent grades. The female logistic 

regression estimates for grades 7 and 8 were not significant, which indicated that for grades 7 

and 8, male and female students were equally likely to be in all three victimization classes.  

Categorical covariates allow for a straightforward comparison of transition matrices 

because the transition matrix is the same for everyone in each of the categories of the 

covariate (e.g., males and females). The transition probabilities allow us to not only compare 

transition probabilities across transition points (i.e., grade 6 to 7 can be compared to grade 7 

to 8), but also across gender.  

Table 3.17. Estimated transition probabilities presented by gender (males on the left, 
females on the right) based on model with only gender as a covariate 

  Males     Females 

 Grade 7   Grade 7 

Grade 6 VI SV NV     VI SV NV 

VI 0.42 0.42 0.16  VI 0.42 0.38 0.19 

SV 0.05 0.51 0.44  SV 0.05 0.44 0.51 

NV 0.01 0.11 0.88  NV 0.01 0.09 0.91 

         

 Males   Females 

 Grade 8   Grade 8 

7th Grade VI SV NV     VI SV NV 

VI 0.51 0.39 0.10  VI 0.52 0.37 0.11 

SV 0.07 0.51 0.42  SV 0.07 0.46 0.47 

NV 0.02 0.07 0.91   NV 0.01 0.06 0.93 

Note: VI class = victimized class, SV class = sometimes-victimized class, NV class = 
nonvictimized class. 
  

As seen in Table 3.17, there were no clear differences across transition points. The 

transition probabilities in each of the cells were rather close across the two transition points 
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for both genders. This was expected though, because in the previous step there was not a 

strong signal indicating that estimating a transition matrix for each time point was necessary.  

Even though the effect of gender was not significant, there were still interesting 

differences in the estimated transition probabilities when comparing males and females. 

Considering the first transition point, and comparing males and females in Table 3.17, the 

probability of remaining in the victimized class was about the same across gender (42% for 

both males and female students). Female students were more likely to transition down to the 

nonvictimized class (19%) than the male students (15%). When comparing the transition 

probabilities across time for both male and female students, the stability probabilities for the 

extreme groups (e.g., the VI and NV classes) were higher during the second transition point.  

LTA Model with Continuous Covariates 

So far, only the gender covariate has been considered, but there are other covariates 

that are also of interest in this study. Students’ feelings of social anxiety, school safety, 

gender, and ethnicity are all included in an LTA model that builds on previous decisions. 

The next LTA model fit included a second-order effect and did not assume stationary 

transition probabilities. All of the covariates were allowed to have time-varying effect on the 

classes.  
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Figure 3.5. Model diagram of the LTA with first- and second-order effect, non-
stationary transition probabilities, and time-varying effects of covariates. 

 
Figure 3.5 displays the LTA model with both categorical (i.e., female and the 

ethnicity dummy variables) as well as continuous covariates (i.e., anxiety and school safety). 

This model does not assume stationary transition probabilities, and therefore different 

transition probabilities are estimated at each transition point. 

Model estimates are presented in Table 3.18. Anxiety and school safety had similar 

effects across all three grades. The anxiety logistic regression coefficient for sixth grade (0.81, 

p < .001) indicated that for a one-unit increase in feelings of anxiety, there is a significant 

increase in the odds of being in the victimized class compared to the nonvictimized class. 

That is, students who felt more anxious had an increase in the odds of being in the 

victimized class compared to the nonvictimized class. A similar effect was found when 

comparing the sometimes-victimized class to the nonvictimized class; students who felt 

more anxious were significantly more likely to be in the sometimes-victimized class 

compared to the nonvictimized class, after controlling for gender, ethnicity, and school 

safety. This result was consistent across all three grades. 
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Table 3.18. Logistic regression coefficients for 3-class model with anxiety, school 
safety, gender (boys = 0, girls = 1), and ethnicity covariates where the nonvictimized 
class is the comparison based on the second-order LTA model 

  Effect Coefficient S.E.    Z P-value 
Odds 
Ratio 

Grade 6             

Victimized Anxiety  0.81* 0.15  5.57 0.00 2.25 

 Sch. Safety -2.03* 0.25 -8.27 0.00 0.13 

 Female -0.52 0.28 -1.89 0.06 0.60 

 Latino  0.96* 0.30  3.22 0.00 2.60 

 
African 

American 
 1.20* 0.37  3.22 0.00 3.32 

 Asian -0.35* 0.21 -1.70 0.04 0.70 

  Biracial -0.29 0.49 -0.60 0.28 0.75 

Sometimes-
Victimized 

Anxiety  0.53* 0.17  3.20 0.00 1.70 

Sch. Safety -1.28* 0.29 -4.46 0.00 0.28 

 Female  0.21 0.15  1.42 0.15 1.24 

 Latino  0.37 0.32  1.14 0.25 1.44 

 
African 

American 
 0.70* 0.30  2.36 0.02 2.01 

 Asian -0.31 0.33 -0.92 0.36 0.74 

  Biracial -0.05 0.35 -0.14 0.89 0.95 

Grade 7      

Victimized Anxiety  0.43* 0.19  2.31 0.02 1.54 

 Sch. Safety -1.52* 0.17 -9.04 0.00 0.22 

 Female -0.44 0.36 -1.20 0.23 0.65 

 Latino  0.10 0.66  0.15 0.88 1.10 

 
African 

American 
 0.99 0.72  1.39 0.17 2.70 

 Asian  0.85 0.85  1.00 0.32 2.33 

  Biracial  0.72 0.86  0.84 0.40 2.06 

Sometimes-
Victimized 

Anxiety  0.62* 0.11  5.56 0.00 1.85 

Sch. Safety -0.62* 0.16 -3.89 0.00 0.54 

 Female -0.43 0.24 -1.84 0.07 0.65 

 Latino  0.12 0.42  0.29 0.77 1.13 

 
African 

American 
 0.69* 0.32  2.14 0.03 2.00 

 Asian  0.45 0.60  0.75 0.45 1.57 

  Biracial  0.57 0.46  1.22 0.22 1.76 
12
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Grade 8         

Victimized Anxiety  0.92* 0.33  2.80 0.01 2.50 

 Sch. Safety -0.99* 0.44 -2.24 0.03 0.37 

 Female -0.05 0.36 -0.13 0.90 0.96 

 Latino -0.24 0.73 -0.32 0.75 0.79 

 
African 

American 
-0.04 0.58 -0.07 0.94 0.96 

 Asian -0.61 0.61 -1.00 0.32 0.54 

  Biracial  0.00 1.10  0.00 1.00 1.00 

Sometimes-
Victimized 

Anxiety  0.76* 0.24  3.12 0.00 2.14 

Sch. Safety -0.19 0.55 -0.35 0.72 0.82 

 Female -0.36 0.27 -1.33 0.18 0.69 

 Latino -0.76* 0.18 -4.16 0.00 0.47 

 
African 

American 
-0.40* 0.19 -2.14 0.03 0.67 

 Asian -1.28* 0.29 -4.37 0.00 0.28 

  Biracial -0.29 0.42 -0.69 0.49 0.75 

 
There was a significant school safety effect for both the victimized and sometimes-

victimized classes as compared to the nonvictimized class. The school safety logistic 

regression coefficient for fall of grade 6 (-2.03, p < .001) indicated there was a significant 

difference in feelings of school safety for students in the victimized class compared to the 

nonvictimized class. Specifically, for a one-unit increase in feelings of school safety, the odds 

of being in the victimized class compared to the nonvictimized class decreased, after 

controlling for gender, ethnicity, and anxiety. Similar results were found for the sometimes-

victimized class; students who felt safer in school were more likely to be in the sometimes-

victimized class compared to the nonvictimized class, after controlling for gender, ethnicity, 

and anxiety. This result is consistent across all three grades. Interestingly, there were 

consistently no gender differences across all grades once ethnicity, anxiety, and school safety 

were included in the model. This implied that female students were equally likely to be in any 

of the three classes after controlling for the other covariates.  
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Higher-order Latent Class Variable: The Mover-Stayer Variable 

The inclusion of a higher-order latent class variable, such as a mover-stayer second-

order latent class variable (described in Chapter 2), is one way to capture unobserved 

heterogeneity in the transition probabilities. In the current application, the mover-stayer 

variable is of interest because it will identify students who experience chronic victimization 

throughout middle school. A mover is a student who transitions at least once in or out of a 

victimization class in middle school (e.g., one possible mover pattern would be: VI, NV, 

NV). A stayer is a student who remains in the same victimization class throughout middle 

school (e.g., SV, SV, SV, or NV, NV, NV). The mover-stayer variable differentiates between 

students who remain in the same victimization class throughout middle school from 

students who show at least one transition. By separating out the movers from the stayers, we 

more accurately estimate the transition probabilities for those students who move, if in fact 

there are students who have zero probability of moving among the victimization classes (i.e., 

stayers). The mover-stayer specification of the higher-order latent variable is relevant in this 

application because the same number and type of latent classes emerged across all three 

grades.  

The mover-stayer LTA model that was estimated did not include observed covariates 

or assume stationary transitions and only included a first-order effect. There are several 

patterns worth noting. Table 3.19 presents the percent of students in each of the three 

classes based on this model. The class size pattern that was observed in Step 2 is again noted 

here, where the size of the victimization class decreases from 21% in grade 6 to 10% in 

grade 8, while the nonvictimized class increases from 47% in grade 6 to 71% in grade 8.  
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Table 3.19. Percent of students in each class in grades 6 through 8 based on the 
mover/stayer LTA model without covariates 

Classes Grade 6 Grade 7 Grade 8 

VI 21% 12% 10% 

SV 32% 26% 19% 

NV 47% 63% 71% 

Note: VI class = victimized class, SV class = sometimes-victimized class, NV class = 
nonvictimized class. 

 

Table 3.20 presents the most frequent patterns (those that had a frequency larger 

than 10) of transitions for the mover-stayer model. Fifty-two percent of the sample was 

classified as movers, while 48% were stayers. The most common pattern for students 

classified as movers were those who were sometimes-victimized in grade 6 and then moved 

into the nonvictimized class and remained there for grades 7 and 8 (i.e., the pattern of SV, 

NV, NV), which comprised 9% of the total sample. The next largest pattern among the 

movers (8%) was for students in the sometimes-victimized class for grades 6 and 7, who 

then transitioned into the nonvictimized class at grade 8. These two patterns were similar to 

a finding observed before; when students change victimization class, they were likely to 

transition to a less frequently victimized class. The remaining patterns for students classified 

as movers exhibited a variety of different patterns. For example, 10 students (1% of the 

sample) who were in the victimized class at grade 6 transitioned into the nonvictimized class 

at grade 7, and then transitioned back in the victimized class in grade 8 (i.e., the VI, NV, VI 

pattern). 
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Table 3.20. Percent of students in each pattern of victimization of experiences, 
ordered by the largest to smallest pattern for movers and stayers 

  Pattern     

  Grade 6 Grade 7 Grade 8 Count Percent 

Movers SV NV NV 183 9% 

(52%) SV SV NV 161 8% 

 SV SV SV 89 4% 

 SV NV SV 82 4% 

 VI SV NV 77 4% 

 VI NV NV 76 4% 

 VI SV SV 51 2% 

 NV SV NV 44 2% 

 NV NV NV 43 2% 

 VI NV SV 37 2% 

 SV VI NV 27 1% 

 NV SV SV 24 1% 

 NV NV SV 22 1% 

 SV VI SV 22 1% 

 VI VI NV 21 1% 

 VI VI SV 16 1% 

 SV SV VI 16 1% 

 SV NV VI 15 1% 

  VI NV VI 10 1% 

Stayers NV NV NV 808 40% 

(48%) VI VI VI 128 6% 

  SV SV SV 50 2% 

Note: VI class = victimized class, SV class = sometimes-victimized class, NV class = 
nonvictimized class. 
 

 The largest class among those classified as stayers, found in Table 3.20, were those 

students who remained consistently nonvictimized throughout middle school. These 

students comprised 40% of the sample. The next largest group (6%) was the chronically 

victimized class, and the smallest class of the stayers (2%) was the students who remained in 

the sometimes-victimized class.  
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Mover-stayer LTA Model with Covariates 

The previous mover-stayer LTA model did not include covariates or distal outcomes. 

There are several covariates of interest in this application. Thus, the next mover-stayer LTA 

model considered included relevant covariates. Because of the strict stationarity assumption 

imposed for the stayers, the covariates were only related to the students in the mover class. 

Gender was included in the model and allowed to influence both the mover-stayer latent 

class variable, as well as to have a time-varying influence on the time-specific latent class 

variable, as depicted in Figure 3.6. Three continuous time-varying covariates influenced the 

time-specific latent class variables and were allowed to have a time-specific effect: feelings of 

school safety, depression, and anxiety. Two different distal outcome variables were included 

in the model, and distal outcome means were estimated for students classified as movers and 

for the three types of stayers. 
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Figure 3.6. Mover-Stayer LTA model with gender and ethnicity, and time-varying 
covariates depression and anxiety and two distal outcomes. 

 
The results of the model depicted in Figure 3.6 are not presented and interpreted at 

this point. This is because, though this model presented one way of modeling unobserved 

heterogeneity in the transitions over time, the higher-order effect (i.e., the second-order 

effect) was chosen as a more appropriate way to describe the heterogeneity. The mover-

stayer approach imposes a strict stayer class where students in that class have a zero 

probability of transitioning to any other victimization class. This implies, among other 

things, that students identified as stayers in the nonvictimized class have zero probabilities of 

being victimized, an overly severe restriction that does not seem plausible in this sample of 

students. Thus, the model with a higher order effect is a more practical way of describing 

heterogeneity in victim class transitions. 
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Comments. This step involved the inclusion of covariates that aid in describing and 

understanding heterogeneity in the transitions. This step involved two types of covariates: 

observed and latent covariates. Of the observed covariates, both time-varying and time-

invariant covariates were allowed to have time-varying effects. Important time-varying 

covariate effects emerged. The latent covariate was a higher order latent class variable 

specified to be a mover-stayer latent variable. A model that included both the mover-stayer 

latent variable and observed covariates was presented for the sake of pedagogy. The results 

of this model were not interpreted in this step because the mover-stayer variable is too 

restrictive for the study of peer victimization, a decision discussed further in the next step.  

Step 5: Include Distal Outcomes and Advanced Modeling Extensions 

 
 This last step involves specifying the final LTA Model that builds on information 

from the previous steps. The final model considered was one that included the important 

second-order effect, had time-varying transition probabilities, time-varying and time-

invariant covariates and two distal outcomes, and which is depicted in Figure 3.5. 

Specifically, time-varying covariates are included in the model and allowed to have a time-

varying effect. Time-invariant covariates (i.e., gender and ethnicity) are allowed to have time-

specific effects. Two distal outcomes, physical symptoms and social worries, are included, 

and their means are estimated for each victimization class membership at grade 8.  

The model in Figure 3.7 depicts the final model considered in this application. 

Building on results from previous steps, this model includes a higher order effect, non-

stationary transition probabilities, time-varying covariates that have time-varying effects and 

a distal outcome that is predicted by a student’s victimization status in grade 8. 
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Figure 3.7. Second-order LTA model with gender and ethnicity, and time-varying 
covariates of depression and anxiety and a distal outcome. 

 

The results of this model are consistent with what has previously been found. The 

relative sizes of the classes, presented in Table 3.21, showed a transitional pattern consistent 

with what was observed in previous steps. Specifically, the size of the victimized class 

decreased from 26% in grade 6 down to 12% in grade 8, while the nonvictimized class 

increased from 32% in grade 6 to 56% in grade 8. The relative size of the sometimes-

victimized class also decreased. 

Table 3.21. Percent of students in one of the victimization classes in grades 6 through 
8 based on final model 

  Grade 6 Grade 7 Grade 8 

VI 26% 16% 12% 

SV 42% 36% 32% 

NV 32% 48% 56% 

Note: VI class = victimized class, SV class = sometimes-victimized class, 
NV class = nonvictimized class. 
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Table 3.22 presents the associations that the covariates had with students’ 

victimization classifications across middle school. Consistent with the previous model 

interpretations, the nonvictimized class was the reference class. Thus, two covariate 

comparisons were made: (a) the likelihood of being in the victimized class compared to the 

nonvictimized class, and (b) the likelihood of being the sometimes-victimized class 

compared to the nonvictimized class. Then, these results can be compared across the three 

grades to note general trends in covariate effects. The value of the model estimates are 

interpreted for the first covariate presented, social anxiety, but overall summaries of results 

for the rest of the covariates are presented since the interpretation of the value of the logistic 

regression coefficient can be easily made.  

The results for the covariate of social anxiety in grade 6 showed differential effects 

among the victimization classes. The social anxiety logistic regression coefficient for grade 6 

(0.46, p < 0.05) indicated that a one unit increase in social anxiety resulted in an increase in 

the odds of being in the victimized class compared to the nonvictimized class. Thus, 

students in the victimized class reported feeling more socially anxious, controlling for all 

other covariates. The non-significant logistic regression coefficient for the sometimes-

victimized class in grade 6 (0.25, p > 0.05) indicated that there was no significant difference 

in feelings of social anxiety for students in the sometimes-victimized and nonvictimized 

classes. A similar differentiation in feelings of social anxiety was found in grade 8. Results 

indicated no significant differences in terms of social anxiety among the three victimization 

classes in grade 7. 

There were significant depression and school safety effects for both the victimized 

and sometimes-victimized classes compared to the nonvictimized class. Specifically, students 
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in both the victimized and sometimes-victimized classes reported significantly more feelings 

of depression than students in the nonvictimized class, a result that was consistent across 

middle school. The significant school safety effect for both the victimized and sometimes-

victimized classes in grades 6 and 7 indicated that students in the victimized and sometimes-

victimized classes reported feeling significantly less safe in school than students in the 

nonvictimized class, after controlling for the other covariates. This effect, however, did not 

persist through grade 8, where results indicated that there was no significant difference in 

feelings among the victimization groups. 

The significant gender effect for grade 6 indicated that boys were more likely than 

girls to be in the victimized class compared to the nonvictimized class, but that boys and 

girls were equally likely to be in the sometimes-victimized and nonvictimized classes. For 

grades 7 and 8, boys and girls were equally likely to be in any of the three victimization 

classes, controlling for the other covariates. 
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Table 3.22. Logistic regression coefficients for 3-class model with gender (boys = 0, 
girls = 1), school safety, depression, anxiety and ethnicity covariates, the 
nonvictimized class is the comparison based on the final LTA model 

    Effect Coefficient S.E.       Z P-value 
Odds 
Ratio 

Grade 6             

 Victimized Social Anxiety  0.46* 0.12  3.74 0.00 1.58 

  Depression  5.00* 2.05  2.44 0.01 148.86 

  School Safety -2.10* 0.62 -3.40 0.00 0.12 

  Female -0.61* 0.26 -2.33 0.02 0.55 

  African American  1.41* 0.51  2.76 0.01 4.10 

  Latino  0.84* 0.33  2.57 0.01 2.33 

  Asian -0.39* 0.22 -1.81 0.07 0.67 

  Biracial -0.40      0.61 -0.65 0.52 0.67 

        

 Sometimes-
Victimized 

Social Anxiety  0.25 0.17  1.45 0.15 1.29 

 Depression  3.66* 1.81  2.02 0.04 38.86 

  School Safety -1.13* 0.57 -1.97 0.05 0.32 

  Female  0.03 0.42  0.07 0.94 1.03 

  African American  0.79* 0.40  1.98 0.05 2.21 

  Latino  0.40 0.23  1.76 0.08 1.49 

  Asian -0.25 0.38 -0.67 0.50 0.78 

  Biracial  0.04 0.33  0.13 0.89 1.04 

Grade 7            

 Victimized Social Anxiety  0.25 0.25  1.00 0.32 1.28 

  Depression  3.79* 1.49  2.55 0.01 44.08 

  School Safety -1.37* 0.27 -5.18 0.00 0.25 

  Female -0.71* 0.29 -2.48 0.01 0.49 

  African American  1.16* 0.51  2.30 0.02 3.19 

  Latino  0.15   0.53  0.28 0.78 1.16 

  Asian  0.77 0.79  0.98 0.33 2.17 

  Biracial  0.99 0.58  1.69 0.09 2.68 
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Table 3.22. (continued). 

    Effect Coefficient S.E.       Z P-value 
Odds 
Ratio 

Grade 7            

 Sometimes-
Victimized 

Social Anxiety  0.25 0.17  1.48 0.14 1.28 

 Depression  3.14* 1.51  2.09 0.04 23.20 

  School Safety -0.40 0.30 -1.33 0.18 0.67 

  Female -0.22 0.27 -0.83 0.41 0.80 

  African American  1.04* 0.45  2.33 0.02 2.83 

  Latino  0.39 0.42  0.92 0.36 1.47 

  Asian  0.41 0.76  0.54 0.59 1.50 

  Biracial  0.81 0.44  1.85 0.06 2.25 

Grade 8            

 Victimized Social Anxiety  0.52* 0.24  2.13 0.03 1.68 

  Depression  3.89* 1.53  2.55 0.01 48.81 

  School Safety -0.98 0.52 -1.88 0.06 0.38 

  Female -0.19 0.41 -0.46 0.65 0.83 

  African American -0.39 0.67 -0.59 0.56 0.68 

  Latino -0.89 0.67 -1.32 0.19 0.41 

  Asian -1.06* 0.47 -2.25 0.02 0.35 

  Biracial -0.78 1.28 -0.61 0.54 0.46 

        

 Sometimes-
Victimized 

Social Anxiety  0.27 0.23  1.19 0.23 1.31 

 Depression  3.07* 1.23  2.50 0.01 21.52 

  School Safety -0.58 0.63 -0.93 0.35 0.56 

  Female -0.02 0.27 -0.09 0.93 0.98 

  African American -0.56 0.46 -1.23 0.22 0.57 

  Latino -0.79* 0.29 -2.71 0.01 0.45 

  Asian -0.68 0.44 -1.55 0.12 0.51 

    Biracial -0.38 0.44 -0.88 0.38 0.68 

 

Ethnicity was included in the model using four dummy variables, where Caucasian 

students were used as the reference group. Results in Table 3.22 indicated that for grades 6 

and 7, African American students were more likely to be in the victimized and sometimes-

victimized class than the nonvictimized class, compared to Caucasian students. By grade 8, 
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however, this difference did not persist. Latino students were more likely to be in the 

victimized class than the nonvictimized class in grade 6 compared to Caucasian students, but 

equally likely to be in the sometimes-victimized class. For grades 7 and 8, Latino students 

were just as likely as Caucasian students to be in the victimized class, but in grade 8 were 

significantly less likely to be in the sometimes-victimized class. 

 The results for the last two ethnic groups, Asian and Biracial, had very similar results 

across the grades. Specifically, both Asian and Biracial students were equally likely to be in all 

three of the victimization classes through middle school as Caucasian students. There was 

one exception. In grade 8, Asian students were significantly less likely to be in the victimized 

class than then nonvictimized class, compared to the Caucasian students.  

Second-Order Effect 

The inclusion of the second-order effect in the final model showed an important 

relationship between grades 6 and 8 victimization classes. Table 3.23 displays the transition 

probabilities for grades 6 and 8, collapsed over grade 7 and based on the model with the 

second-order effect. Results in Table 3.23 indicated that 84% of the students who were 

nonvictimized in grade 6 returned to being nonvictimized in grade 8, regardless of what 

victimization experiences they had in grade 7. Further, of the students who were in the 

victimized class in grade 6, 36% returned to being victimized, and 42% to being sometimes-

victimized in grade 8. Comparing all those who ended up in the victimized class in grade 8, 

results indicated that students who began grade 6 being victimized were 18 times more likely 

to end up in the victimized class in grade 8 compared to those who were nonvictimized in 

grade 6, regardless of grade 7 victimization experiences. 
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Table 3.23. Transition probabilities between grade 6 and grade 8, collapsing over 
grade 7 for the final LTA model with a second-order effect 

  Grade 8 

Grade 6 VI SV NV 

VI 0.36 0.42 0.23 

SV 0.04 0.41 0.55 

NV 0.02 0.13 0.84 

Note: VI class = victimized class, SV class = sometimes-victimized class, 
NV class = nonvictimized class.  
 

Distal Outcomes 

In the final model, two grade 9 distal outcomes were included and related to 

students’ victimization class in grade 8. This allows for direct relationships between 

victimization experiences in middle school and outcomes in grade 9. The mean differences 

in Table 3.24 indicated that students who ended up in the victimized class in grade 8 

reported having more physical symptoms and more social worries in high school than 

students in the nonvictimized class in grade 8. Further, students who were sometimes-

victimized in grade 8 were more likely to report having more physical symptoms and more 

social worries in grade 9 than those in the nonvictimized class.  

Table 3.24. Mean (M) and standard deviation (SD) for grade 9 physical symptoms 
and social worries by grade 8 victimization class 

Grade 8 
Victimization  

Grade 9 Outcomes 

Physical Symptoms 
M (SD) 

Social Worries 
M (SD) 

VI 1.83 (0.11) 4.55 (0.14) 

SV 1.88 (0.11) 4.17 (0.14) 

NV 1.56 (0.11) 3.99 (0.14) 

Note: VI class = victimized class, SV class = sometimes-victimized class, 
NV class = nonvictimized class. 
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Comments. This step involved a culmination of all of the analysis steps presented in 

this chapter. The decision to use a model with a second-order effect instead of one with a 

mover-stayer variable was made because the second-order effect provided what was thought 

to be a more meaningful description of change for the study of victimization. The mover-

stayer variable did provide an interesting way to describe chronic victims and consistent non-

victims, but was perhaps overly restrictive for students in the stayer class when modeling 

peer victimization. The choice not to use the mover-stayer variable was specific to the goals 

of this current application because of the strict restrictions imposed. The mover-stayer 

variable could be appropriate in other modeling settings.  

 Results of the final model that included a second-order effect indicated that there 

was a significant lasting effect of victimization in grade 6, where students who were 

victimized in grade 6 were much more likely to be victimized by grade 8 than students who 

were not victimized in grade 6. Further, students who were in the victimized class in grade 8 

showed maladjustment problems even after transitioning to high school. Taken together, 

these results indicate the importance of grade 6 experiences when studying victimization. 

They also highlight the fact that grade 6 is a critical period during which victimization 

interventions should take place as a way of preventing students from remaining on a chronic 

victimization trajectory.  

Conclusions 

 This chapter included a detailed application of the analysis steps of Chapter 2 to 

study change in self-reported victimization in a sample of middle school students. Several 

important contributions are made in this chapter. The illustration of the analysis steps from 
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Chapter 2 in the context of an applied example is a contribution itself. The systematic 

application of these steps is intended to be general enough to be used in a range of 

applications. The choice to present results from each of the analysis steps allowed for the 

demonstration of a complete modeling process that is not commonly seen in the 

publications using LTA. Further, several innovative LTA modeling extensions were 

highlighted, including the consideration of alternative measurement models, the inclusion of 

the higher-order effect, the mover-stayer variable and distal outcomes. The application of 

these modeling contributions allowed for an innovative study of peer victimization. Chapter 

4 synthesizes the modeling results in a broader context of peer victimization. 
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Chapter 4. Discussion and Conclusions 

This chapter provides a review of the material presented in this dissertation. 

Beginning with a discussion of peer victimization research, the modeling results are 

summarized to highlight how the findings of the LTA contribute to our understanding of 

peer victimization. This is followed by a discussion of the modeling contributions that were 

made in this dissertation, focusing on extensions of the model not commonly seen in other 

applications. This chapter concludes by discussing possible modeling extensions, 

opportunities for future work, and other advanced applications of the LTA modeling ideas. 

Peer Victimization Results 

 There were two goals for using LTA to study peer victimization. The first goal was 

to identify classes of students based on their self-reported victimization experiences. The 

second was to describe developmental patterns of peer victimization throughout middle 

school using the LTA model. The following discusses the findings on both of these issues. 

Victimization Based on Severity 

The results of the current study proved evidence that victimization classes are best 

understood according to the degree, rather than type, of victimization during the middle 

school years. These classes emerged using latent class analysis (LCA) that indicated that 

three, rather than two, distinct classes could describe students’ victimization experiences: 

victimized, sometimes-victimized, and non-victimized. The same three victimization classes 

emerged across grades 6, 7, and 8. The relative size of the classes suggested that the non-

victimized class, the largest class, was the normative class. The sometimes-victimized class 

was the next largest class, and the victimized class was the smallest. This result persisted 
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across middle school (i.e., the non-victimized class was always the largest, and the victimized 

was always the smallest). While the relative ordering of the classes remained the same, the 

actual size of each class did change over time in a meaningful way. The victimized class 

decreased over time while the size of the non-victimized class increased, indicating that as 

students developed throughout middle school they were likely to transition out of the 

victimized class and into the non-victimized class. This result is consistent with studies that 

found that victimization is at its highest early on in middle school compared to the other 

years (e.g., Nansel et al., 2001).  

This study incorporated gender and perceived school safety into the LCA analysis as 

covariates and depression as a distal outcome to evaluate the validity of the classes. These 

variables were used because of the existence of prior evidence demonstrating consistent 

associations with peer victimization (Anderman & Kimweli, 1997; Boivin, et al., 1995; Crick 

et al., 2002). Results indicated that boys and girls appeared to be equally likely to report 

experiencing a variety of types of victimization during the early part of middle school, but 

girls were less likely to be in the victimized class later on. Further, results demonstrated that 

when students perceived their environment to be an unsafe place, they were personally 

experiencing victimization. The distal outcome results of depression indicated that 

victimized students were more likely to be depressed than sometimes-victimized and non-

victimized students. These findings are consistent with studies of victimization and its links 

to social stress, feelings of school safety, and depression. Taken together, the results 

demonstrate that the three victimization classes are meaningful and valid. 
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Developmental Understanding of Peer Victimization 

Three key substantive findings add to the developmental understanding of peer 

victimization. First, previous cross-sectional findings that indicated a peak in peer 

victimization in early middle school (e.g., Nansel et al., 2001) were supported with 

longitudinal data. The normative pattern was for students to move to less victimized classes 

over time. Patterns of increasing victimization were exceedingly rare. Further, patterns of 

chronic victimization did occur; however, only a small class of students had this experience. 

 Second, prior victimization states were associated with maladjustment. A higher- 

order effect indicated that students’ prior victimization experiences in grade 6 were 

significantly predictive of their victimization experiences in grade 8, over and above their 

grade 7 experiences. This indicated that there is a lingering effect of early victimization 

experiences, that lasts two years (i.e., from grade 6 to grade 8), signifying the importance of 

grade 6 experiences in terms of preventing students’ continued feelings of victimization 

throughout middle school. Further, grade 8 victimization classes predicted maladjustment 

even into high school (i.e., being victimized in grade 8 led to more physical symptoms and 

social worries). Thus, grade 6 appears to be a critical time to intervene to prevent feelings of 

peer victimization and help minimize the likelihood that students will suffer from 

maladjustment in high school. 

 Third, the results of the LTA demonstrated time specific effects for the covariates 

included in the analysis that are typically associated with peer victimization. The gender 

effect was consistent with what is expected; in grades 6 and 7, compared to girls, boys were 

more likely to be in the victimized class than the non-victimized class. Depressive symptoms 

consistently differentiated the victimization classes throughout the course of middle school, 
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indicating students who were victimized were also more likely to express more depressive 

feelings than non-victimized students. While findings for school safety and social anxiety 

were less consistent, they support the idea that students experiencing victimization were 

more socially anxious and felt considerably less safe in grade 6, when victimization is known 

to be at its highest in middle school. This finding, however, did not persist through middle 

school. A lower feeling of school safety was associated with being in sometimes-victimized 

and victimized classes in early middle school, but not in later years. Combined, these findings 

suggested that as children become the oldest and biggest in their middle schools, they may 

be less concerned about safety, but still experienced feelings of personal distress associated 

with being a victim (e.g., depressive symptoms). 

Strengths of LTA to the Study of Peer Victimization 

There were many strengths of using LTA to address research questions about the 

development of victimization experiences throughout middle school. LTA has the ability to 

define the victimization classes using a measurement model rather than using cut-off points 

or other methods commonly used in other victimization studies. Further, LTA enables 

researchers to explore the validity of the classes by using other variables or outcomes that 

are expected to be related to the victimization classes. This method presented a clear 

advantage over alternative approaches that a priori assign individuals to victimization classes 

using cut-offs, and then treats the victimization class status as a known variable. Using LTA, 

all of the variables included in the analysis (i.e., covariates and distal outcomes) inform the 

formation of classes as well as influence the change process.  
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Limitations to the Study of Peer Victimization  

 There are a few limitations to this study of peer victimization. The current study uses 

six items to capture peer victimization. It is possible that the model for the victimization 

classes could have used other, yet to be identified, forms of victimization. Including 

victimization items that tap into other aspects of victimization than those included might 

change the classes that emerge. Further, the current study uses data collected in middle 

school and, as a result, it is unclear whether or not the three victimization classes would 

emerge once students transition into high school. It may be reasonable to expect the peak in 

victimization that occurred in grade 6 to occur again directly after the transition to high 

school, when students are once again the smallest and youngest in their school. 

As in any study, more predictors and distal outcomes could have been included to 

provide a richer depiction of the developmental process than this dissertation explored. This 

study linked victimization to two outcomes measured in the students’ first semester in high 

school. Future studies could explore additional distal outcomes and integrate measurements 

from different points in high school, as well as different covariates (e.g., high school climate, 

social support) that might illuminate the conditions under which the negative consequences 

of middle school peer victimization persist for students during their high school tenure.  

Modeling Ideas and Contributions 

This dissertation presented several modeling contributions. One was the use of 

covariates in the LTA model. Specifically, observed covariates, both time invariant and time-

varying, were included in the LTA model and allowed to have time-varying effects on the 

victimization classes. Had these effects not been allowed to be time-varying, it is possible 
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that important developmental differences would have been overlooked. For example, the 

differential effect between students’ feelings of safety and the victimization classes suggested 

that as students progress through school they become more able to adapt to victimization.  

The inclusion of covariates was not limited to observed variables. The current 

application included a latent covariate in the form of a higher-order latent class variable. The 

covariate was specified to be a mover-stayer latent class variable that helped to explore 

chronic victimization. Even though this study did not incorporate the mover-stayer variable 

in the final model, its consideration as a possible latent covariate marked another 

methodological contribution.  

Other modeling contributions include the consideration of alternative measurement 

models that are available for LTA models. Though LCA was selected as the measurement 

model, others were described and considered in this application. This study also included a 

higher-order effect, which allowed the direct relationship between non-adjacent latent class 

variables to be specified. This is an important extension not commonly seen in LTA 

applications, mainly due to software restrictions. Including the higher-order effect in this 

application yielded an important lasting impact of early class membership that otherwise 

would not have been found. If the higher-order effect had been omitted, the lasting effect of 

grade 6 victimization would only have emerged indirectly through the first-order effects. 

The analysis steps presented in this dissertation highlight another important 

methodological and pedagogical contribution. The steps were presented in Chapter 2 and 

then illustrated in Chapter 3, using the study of peer victimization as a concrete application. 

The analysis steps were designed to aid in the specification of an LTA model, starting from 

simple descriptive statistics, and eventually building up to a final LTA model that includes 
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many advanced modeling ideas. The systematic progression through the steps that was 

presented in Chapter 3 included a discussion of the results of each step and ways in which 

the results could inform subsequent steps. Further, using the steps to highlight the modeling 

process allowed for an illustration of some of the decisions that occur in the application of a 

method to data. The focus on the modeling process using the steps goes beyond what is 

commonly seen in publications using LTA.  

All of the Mplus syntax used to specify the models in this dissertation is included in 

the appendix. Researchers using LTA models with Mplus can use these input files as 

example syntax in more general applications. This study presents a wider range of Mplus 

LTA model specifications than can be found anywhere else. 

Modeling Limitations and Future Work 

This dissertation intended to provide a pedagogical description of the LTA model 

and an application that highlights the utility of the model. In order to satisfy these objectives, 

this study did not consider, or only discussed briefly, certain modeling possibilities. Ideas not 

considered in the dissertation may be thought of as part of the limitations, but also highlight 

possibilities for future work.  

Generalizability 

One specific goal was to provide a comprehensive application of LTA that included 

discussion of modeling details not commonly found in publications. As such, this 

dissertation attempted to make the application of the model as general as possible. There are 

limitations in the generalizability of the application, however, specifically in terms of the 

interpretation of the parameters and the choice of how to model heterogeneity in transitions.  
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In terms of the interpretation of the parameters, the current application benefited 

from the stability in the three victimization classes over time. It is important to note that the 

consistent three-class solution had advantages in terms of understanding peer victimization 

and the interpretation of the results, but in some ways limited the discussion of the modeling 

ideas. Specifically, results from the current study may give the false impression that the same 

number and type of classes must emerge across all time points to use LTA. This is not the 

case. It is possible to use LTA in settings where either the number of classes or the structure 

of the classes varies across time. For example, LTA could be used to model change among 

latent class variables where at one time point there are two classes (e.g., high and low classes) 

and then at a later time point three (e.g., high, medium, and low classes). In such a situation, 

the transition tables would be non-symmetric, but nonetheless possible with LTA.  

The difference in the number and type of the classes might, in fact, be 

developmentally relevant. Consider a hypothetical example using the study of peer 

victimization. It is possible that in grade 6, three victimization classes emerged: victimized, 

sometimes-victimized, and non-victimized. Then, in grade 7, two classes could have 

emerged: victimized and non-victimized. Thus, two extreme victimization classes remain 

constant between those two grades (i.e., victimized and non-victimized), but the sometimes-

victimized class distinction that emerged in grade 6 was no longer needed in grade 7. In this 

hypothetical case, it could be interesting to use LTA to explore which class the sometimes-

victimized students transitioned into in grade 7.  

Further, in terms of interpreting the transition probabilities, ideas of stability and 

chronicity discussed in this application most likely will not be relevant when the number and 

type of classes is not consistent across time. Even when the same number of classes 
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emerges, it is possible to have differently structured classes (i.e., the profiles of the classes are 

not the same across time), which would prohibit discussions about stability. Stability relates 

to an individual’s probability of remaining in the same class over time; thus, the results are 

not meaningful when the classes are not consistent across time. For example, mover-stayer 

restrictions may not be meaningful since stayers are those who stay in the same type of class 

over time. When using a higher-order latent variable in an application where the type and 

structure of classes are different across time, different, more meaningful specifications for 

the higher-order latent class variable would be used to capture important heterogeneity. 

Taken together, these considerations imply that there is nothing inherent in LTA requiring 

that the same number and type of classes across time. Interesting developmental changes 

may appear when classes are different over time and thus transition probabilities would 

describe the change among the developmentally relevant classes. 

Measurement Models 

Though the application in this dissertation considered alternative measurement 

models, the model eventually used to capture the underlying latent construct was LCA. The 

use of alternative measurement models holds a lot of promise in the applications of LTA 

models. Hybrid models that include both a continuous and categorical latent variable may 

prove to be very useful since they provide a way to classify individuals, while still allowing a 

degree of within-group variation. Such models use a latent class variable to classify people so 

that the transition probabilities are still used to describe change among the groups, but these 

values can be influenced by the continuous factor.  

A hybrid measurement model in the context of peer victimization, for example, may 

result in the same three victimization classes and an additional factor that could represent a 
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severity dimension. Thus, even within one of the victimization classes, the factor could be 

used to order students within a given class in terms of their victimization severity. The 

severity information can be related to students’ transition probabilities in order to explore, 

for example, whether or not students in the victimized class that have low severity scores are 

more likely to transition into the sometime victimized class compared to students in the 

same class with high scores.   

Measurement Invariance 

One area for more work in the LTA framework relates to measurement invariance. 

Many applications of LTA do not discuss, or give little attention to, the plausibility of 

measurement invariance, and, as a result, assume full invariance. Depending on the 

application and the types of measured outcomes, this assumption may be applicable, and in 

some cases a necessity. In applications that use the measurement model in an exploratory 

fashion to identify classes that are not known ahead of time, researchers must explore 

measurement invariance in their studies.  

The assumption of full measurement invariance allows for a straightforward 

comparison of classes and transitions across time. In many situations, assuming 

measurement invariance significantly reduces the number of parameters estimated. These are 

not reasons, however, to automatically rely on the assumptions that measurement invariance 

implies. Little research has focused on understanding the implications on parameter 

estimates and model interpretation when important measurement differences are ignored, or 

assumed to not exist. One such measurement difference may be differential item 

functioning. Partial invariance may be a natural solution in these situations. There are no 
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clear recommendations for exploring partial measurement invariance since there are 

numerous ways this invariance can be included in LTA.  

Modeling Heterogeneity in Development 

Three time points were considered in this application, which spanned a 

developmentally relevant period for the study of peer victimization. Having so few time 

points did limit the way in which the study could model heterogeneity in the developmental 

trajectories. Specifically, a choice had to be made to use either a higher-order effect or a 

mover-stayer higher-order latent variable. With more time points, it may be possible to 

include both a higher-order effect and a mover-stayer variable. It is likely that such 

inclusions would need to be supported by strong substantive theory since there are strict 

assumptions implied by a mover-stayer variable (i.e., zero probability of transitioning for 

stayers). However, in theory, it is possible to include both ways of modeling heterogeneity in 

one application.  

LTA Models in a Larger Modeling Framework  

 This dissertation included an application of the LTA model as a means of describing 

development using longitudinal data. As a result, attention was given to the many decision 

processes and analysis steps needed for this type of application. The modeling ideas behind 

LTA, however, go beyond the study of development in a single outcome over time. The next 

section describes some of the modeling extensions made possible by placing LTA into a 

larger modeling framework. 
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Multiple Processes 

This study focused on the single developmental process of peer victimization. As 

with many other outcomes, change in peer victimization does not occur in isolation. Many 

other concurrent processes are related to the development of peer victimization and could 

be modeled simultaneously using multiple process models. In terms of the modeling, a 

natural extension would be to include other concurrent processes, and possibly another LTA 

model (or growth model) that simultaneously models change in, say, aggression over time. 

Such an extension would allow researchers to model relationships across the two processes 

and use covariates to influence each process, while controlling for change in the other. 

LTA Modeling Ideas in a Cross-Sectional Setting 

As described in Chapter 2, the ideas behind LTA build on modeling the relationship 

between two latent categorical variables. LTA uses this framework to model change in 

repeated measures; thus, it is considered a longitudinal model, but there are many 

applications where the modeling ideas can be used in a cross-sectional analysis. These 

models can be explored using log linear modeling, but exploring these relationships using the 

LTA specifications in Mplus may be considered more straightforward. Consider, for 

example, two latent class variables each measuring different constructs, say peer 

victimization experiences (as in the current application) and bully experiences, where the 

categories of each variable describe a status. The relationships of individuals’ statuses for the 

two constructs can be described using the transition table. The cells of the table would 

indicate the probability of the different status combinations. The benefits of modeling the 

relationship of two variables of this nature are that the statuses of each construct can be 
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defined with relevant items and then the relationships across the constructs could be 

estimated. Related covariates could be included in either one or both of the constructs. 

Applications Without an Exploratory Measurement Model  

Applications of LTA models do not have to include a complex measurement model 

to benefit from this modeling framework. Hidden Markov models, for example, use a single 

item as an indicator for a latent variable and can easily be specified using this framework. 

These models benefit from using the latent variable framework since the underlying latent 

variable represents an error-free representation of the observed item. 

Other applications that do not rely on a latent variable measurement model involve 

latent variables that are combinations of observed indicator variables. The example described 

in Chapter 2, which involved children’s math skill acquisition, used binary variables to 

indicate if a given skill was observed or not (i.e., child knows how to add or not, child knows 

how to subtract or not). In these applications, the latent variable is used to indicate which 

pattern of the indicators is present. In applications like these, the latent class model is used in 

a confirmatory, rather than exploratory, fashion and the transitions among the classes are 

expressed in the same way as if the classes were based on an exploratory model. 

A range of applications that do not rely on an exploratory measurement model are 

possible. Modeling change in repeatedly measured ethnic identification is an example of an 

application without an exploratory measurement model. With the categories of observed 

variables relating to generic and specific ethnic identification classification, an LTA could 

describe whether or not students exhibit a pattern of moving from a general ethnic 

identification to a more specific identification as they mature.  
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Applications that model change in a binary outcome are also natural applications of 

LTA where an exploratory measurement model is not needed. Consider an example of a 

binary outcome that measures students’ feelings of discrimination that occur in schools (1 = 

feeling discriminated against) . Researchers can use LTA to describe different patterns of 

discrimination experiences throughout middle school. Important covariates may reveal 

relationships among different groups of students, ethnic groups, or gender groups. Further, 

school level information can be included to see if discrimination patterns are persistent 

within certain schools. With binary items as described, using a growth model to describe 

change in a binary outcome is possible, but LTA could provide different insights into the 

change in discrimination experiences over time. 

Multilevel LTA 

The inclusion of multilevel effects into LTA is another natural extension 

(Asparouhov & Muthén, in press). In the current study, a common clustering variable was 

not available since students change classrooms throughout middle school. However, when a 

clustering variable is available, multilevel LTA could uncover important contextual effects. 

For example, in the context of peer victimization, a multilevel effect could uncover the 

impact the overall aggressive nature of a classroom has on a student’s probability of 

transitioning among the victimization classes. One could hypothesize that a victimized 

student in a classroom with an overall high level of aggression is less likely to transition out 

of the victimized class than is a student in a classroom with a lower level of aggression. Many 

other applications of multilevel LTA are possible and are likely to reveal interesting and 

important information about the contextual effect of development throughout middle 

school. 
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 This dissertation provides a solid example of an application of the LTA model. It 

includes analysis steps that could be a useful tool for other applied researchers using LTA 

models. The modeling ideas presented here have enormous potential as stand-alone 

longitudinal models, as well as part of a larger modeling framework. The flexibility of new 

longitudinal models has begun to address the complexity inherent in human development. 

Careful and systematic application of these models can provide unique insight about the 

nature of social outcomes and suggest new directions for further research. 
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Appendix A: Description of Variable Names Used in Analyses 

To help the reader better understand the syntax provided, and because Mplus only 

allows variable names up to 8 characters long, a definition for each of the variables used in 

the syntax is provided. 

 
id = student id 
 
school = indicates which of 11 schools students attend 
 
sex = 0 = male; 1 = female 
 
ethnic = 1 = Caucasian, 2 = African American, 3 = Latino, 4 = Asian, 5 = multiethnic 
 
schsafe6, schsafe7, schsafe8 = school safety composite for grades 6, 7, and 8, respectively 
 
socanx6, socanx7, socanx8 = social anxiety composite for grades 6, 7, and 8, respectively 
 
depress6, depress7, depress8 = depressive symptoms composite for grades 6, 7, and 8 
 
vict1s6 to vict6s6 = 6 individual binary victimization variables for spring of grade 6 
 
vict1s7 to vict6s7 = 6 individual binary victimization variables for spring of grade 7 
 
vict1s8 to vict6s8 = 6 individual binary victimization variables for spring of grade 8 
 
physsx9 = physical symptoms composite for grade 9 
 
hsworry9 = social worries in high school for grade 9 

Later, the gender and ethnicity variables are recoded/renamed such that: 

female: 0 = male, 1 = female 
afam: 0 = Caucasian, 1 = African American 
latino: 0 = Caucasian, 1 = Latino 
asian :0 = Caucasian, 1 = Asian 
multi: 0 = Caucasian, 1 = multiethnic 
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Appendix B: Mplus Syntax for the Factor Analysis Model with 1-Factor 

TITLE: Sixth grade 3-class exploratory LCA model 
DATA:  
     FILE is longitdataset.dat; 
 
VARIABLE:  
NAMES ARE id school sex ethnic 
     schsafe6 socanx6 depress6 
     schsafe7 socanx7 depress7  
     schsafe8 socanx8 depress8 
     vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6  
     vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
     vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8 
     physsx9 hsworry9; 
 
IDVARIABLE = id; 
MISSING are all(9999); 
    
USEVAR = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6; 
CATEGORICAL = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6; 
CLUSTER = school; 
 
ANALYSIS: 
         TYPE = general missing complex; 
         ESTIMATOR= ML; 
 
  MODEL: 
      f1 by vict1s6* vict2s6 vict3s6 vict4s6 vict5s6 vict6s6; 
      f1@1; 
 
OUTPUT:   
      TECH10; 
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Appendix C: Mplus Syntax for the LCA Model with 3-Classes 

TITLE: Sixth grade 3-class exploratory LCA model 
DATA:  
     FILE is longitdataset.dat; 
 
VARIABLE:  
NAMES ARE id school sex ethnic 
     schsafe6 socanx6 depress6 
     schsafe7 socanx7 depress7  
     schsafe8 socanx8 depress8 
     vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6  
     vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
     vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8 
     physsx9 hsworry9; 
 
IDVARIABLE = id; 
MISSING are all(9999); 
    
CLASSES  = C(3); 
USEVAR  = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6; 
CATEGORICAL = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6; 
CLUSTER = school; 
 
ANALYSIS:   
     TYPE = mixture missing complex; 
     STARTS = 50 5; 
     PROCESS = 2; 
 
OUTPUT:  TECH1 TECH8 TECH10 TECH14; 
 
PLOT:  
   TYPE is plot3 ; 
   SERIES = vict1s6(1) vict2s6 (2) vict3s6 (3) vict4s6(4) vict5s6(5) vict6s6(6); 
 
SAVEDATA:  

SAVE = cprobabilities ; 
    FILE is grade6_3c_cprob.dat; 
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Appendix D: Mplus Syntax for LCFA Model with 1-Factor, 2-Classes 

TITLE:  LTA model with invariant transition probabilities 
  LCA full measurement invariance. 

 
DATA:  
     FILE is longitdataset.dat; 
 
VARIABLE:  
NAMES ARE id school sex ethnic 
  schsafe6 socanx6 depress6 
  schsafe7 socanx7 depress7   
  schsafe8 socanx8 depress8 
  vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6  
  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7  
  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8         
  physsx9 hsworry9; 
 
IDVARIABLE  = id; 
MISSING are all(9999); 
CATEGORICAL  = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
                  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
                  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8 ; 
CLASSES  = C(2) ; 
CLUSTER = school; 
 
USEVAR = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6; 
 
ANALYSIS: 
       TYPE = mixture missing complex; 
       ALGORITHM = integration; 
       STARTS = 150 50; 
        
MODEL: 
    %Overall% 
       f by vict1s6* vict2s6 -vict6s6*1.5; 
      [vict1s6$1- vict6s6$1*1.5]; 
      f@0; 
 
    %C#1% 
        [ f@1 ]; 
    %C#2% 
        [ f@0 ]; 
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OUTPUT: 
      TECH1 TECH8 TECH10 TECH14; 
 
PLOT:  
    TYPE is plot3 ; 
   SERIES    = vict1s6(1) vict2s6 (2) vict3s6 (3) vict4s6(4) vict5s6(5) vict6s6(6); 
SAVEDATA: 
    FILE = g6_lcfa_1f2c.dat; 
    SAVE = cprob; 
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Appendix E: Mplus Syntax for FMA Model 1-Factor, 2-Classes 

TITLE: FMA with full measurement invariance 
 
DATA:  
     FILE is longitdataset.dat; 
 
VARIABLE:  
NAMES ARE id school sex ethnic 
  Names are id school sex ethnic  
  schsafe6 socanx6 depress6 
  schsafe7 socanx7 depress7   
  schsafe8 socanx8 depress8 
  vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6  
  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7  
  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8         
  physsx9 hsworry9; 
 
IDVARIABLE = id; 
MISSING are all(9999); 
CATEGORICAL    = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
                  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
                  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8 ; 
CLASSES  = C(2) ; 
CLUSTER = school; 
 
USEVAR  = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6; 
 
ANALYSIS: 
       TYPE = mixture missing complex; 
       ALGORITHM = integration; 
       STARTS = 150 50; 
        
MODEL: 
    %OVERALL% 
        f by vict1s6@1  vict2s6 – vict6s6 *1.5; 
        f*2;  [ f@0 ]; 
    
   %C#1% 
       [vict1s6$1 – vict6s6$1*]; 
 
  %C#2% 
       [vict1s6$1 – vict6s6$1*]; 
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OUTPUT:    
     TECH1 TECH8 TECH10 TECH14; 
 
PLOT: type is plot3 ; 
    SERIES = vict1s6(1) vict2s6 (2) vict3s6 (3) vict4s6(4) vict5s6(5) vict6s6(6); 
SAVEDATA:  
    file = g6_fma_1f2c.dat; 
    save = cprob; 
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Appendix F: Mplus Syntax for Invariant Transition Probabilities 

TITLE: LTA model with invariant transition probabilities 
 LCA full measurement invariance. 

DATA:  
     FILE is longitdataset.dat; 
 
VARIABLE:  
NAMES ARE id school sex ethnic 
  schsafe6 socanx6 depress6 
  schsafe7 socanx7 depress7   
  schsafe8 socanx8 depress8 
  vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6  
  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7  
  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8         
  physsx9 hsworry9; 
 
IDVARIABLE = id; 
MISSING are all(9999); 
CATEGORICAL = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
                  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
                  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8 ; 
CLASSES = C1(3)  C2(3)  C3(3); 
CLUSTER = school; 
 
USEVAR = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
              vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
              vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8 ; 
 
ANALYSIS:  
     TYPE = mixture missing complex; 
     STARTS = 50 10; 
     PROCESS = 2; 
 
MODEL:                         
%Overall%       ! Constraining transition probabilities to be the same  
    [C2#1] (101);  
    [C2#2] (102); 
    [C3#1] (101); 
    [C3#2] (102);     
 
    C2#1 on C1#1 (111); 
    C2#1 on C1#2 (112); 
    C2#2 on C1#1 (113); 
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    C2#2 on C1#2 (114); 
 
    C3#1 on C2#1 (111); 
    C3#1 on C2#2 (112); 
    C3#2 on C2#1 (113); 
    C3#2 on C2#2 (114); 
    
MODEL C1:           ! Measurement model for grade 6 
   %C1#1%             
    [vict1s6$1- vict6s6$1]  (1-6); !  The (1-6) labeling the item thresholds, which will be held               
               !equal across time 
  %C1#2%             
    [vict1s6$1- vict6s6$1]  (7-12); 
%C1#3%             
    [vict1s6$1- vict6s6$1]  (13-18); 
 
MODEL C2:           ! Measurement model for grade 7 
  %C2#1%             
    [vict1s7$1- vict6s7$1]  (1-6); 
  %C2#2%             
    [vict1s7$1- vict6s7$1]  (7-12); 
  %C2#3%             
    [vict1s7$1- vict6s7$1]  (13-18); 
 
MODEL C3:           ! Measurement model for grade 8 
  %C3#1%             
    [vict1s8$1- vict6s8$1]  (1-6); 
  %C3#2%             
    [vict1s8$1- vict6s8$1]  (7-12); 
  %C3#3%             
    [vict1s8$1- vict6s8$1]  (13-18); 
      
OUTPUT:    
     TECH1 TECH8 TECH10; 
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Appendix G: Mplus Syntax for the Second-Order LTA Model 

TITLE: LTA Model with second-order effect, no covariates, 
 LCA full measurement invariance. 
DATA:  
     FILE is longitdataset.dat; 
 
VARIABLE:  
NAMES ARE id school sex ethnic 
     schsafe6 socanx6 depress6 
     schsafe7 socanx7 depress7 schsafe8 socanx8 depress8 
     vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6  
     vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7  
     vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8   
     physym9 hsworry9; 
     
IDVARIABLE = id; 
MISSING are all(9999); 
CATEGORICAL = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
                  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
                  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8 ; 
CLASSES  = C1(3)  C2(3)  C3(3); 
CLUSTER = school; 
 
USEVAR = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
              vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
              vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8; 
 
ANALYSIS:  
      TYPE = mixture missing complex; 
      STARTS = 50 10; 
      PROCESS = 2; 
 
MODEL: 
%Overall% 
  C2#1 on C1#1;   ! Time 2 on Time 1 (first-order effect) 
  C2#1 on C1#2; 
  C2#2 on C1#1; 
  C2#2 on C1#2; 
     
  C3#1 on C2#1;  ! Time 3 on Time 2 (first-order effect) 
  C3#1 on C2#2; 
  C3#2 on C2#1; 
  C3#2 on C2#2; 
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  C3#1 on C1#1;  ! Time 3 on Time 1 (second-order effect)  
  C3#1 on C1#2; 
  C3#2 on C1#1; 
  C3#2 on C1#2; 
 
MODEL C1:            
  %C1#1%             
    [vict1s6$1- vict6s6$1]  (1-6); 
  %C1#2%             
    [vict1s6$1- vict6s6$1]  (7-12); 
  %C1#3%             
    [vict1s6$1- vict6s6$1]  (13-18); 
 
MODEL C2:            
  %C2#1%             
    [vict1s7$1- vict6s7$1]  (1-6); 
  %C2#2%             
    [vict1s7$1- vict6s7$1]  (7-12); 
  %C2#3%             
    [vict1s7$1- vict6s7$1]  (13-18); 
 
MODEL C3:            
  %C3#1%             
    [vict1s8$1- vict6s8$1]  (1-6); 
  %C3#2%             
    [vict1s8$1- vict6s8$1]  (7-12); 
  %C3#3%             
    [vict1s8$1- vict6s8$1]  (13-18); 
 
PLOT:  
     TYPE = plot3 ; 
     SERIES = vict1s6 (1) vict2s6 (2) vict3s6 (3) vict4s6(4) vict5s6(5) vict6s6(6) 
        vict1s7 (7) vict2s7 (8) vict3s7 (9) vict4s7(10) vict5s7(11) vict6s7(12) 
        vict1s8 (13) vict2s8 (14) vict3s8(15) vict4s8(16) vict5s8(17) vict6s8(18); 
 
OUTPUT:  
      TECH1 TECH10; 
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Appendix H: Mplus Syntax for First-Order LTA Model with Covariates, a Mover-Stayer 
Latent Variable, and a Distal Outcome (physical symptoms) 

TITLE: LTA model with M-S variable, covariate, and distal outcome. 
    
DATA:  
     FILE is longitdataset.dat; 
 
VARIABLE:  
NAMES ARE id school sex ethnic 
     schsafe6 socanx6 depress6 
     schsafe7 socanx7 depress7  
     schsafe8 socanx8 depress8 
     vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6  
     vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7  
     vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8   
     physym9 hsworry9; 
 
IDVARIABLE = id; 
MISSING are all(9999); 
CATEGORICAL = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
                  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
                  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8; 
CLASSES = C1(3)  C2(3)  C3(3); 
CLUSTER = school; 
 
USEVAR = schsafe6 depress6 socanx6   
    schsafe7 depress7 socanx7  
    schsafe8 depress8 socanx8 
    physsx9  
    vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
    vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
    vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8 
    female afam latino asian multi; 
 
 
CLUSTER = school;  
CLASSES = C (2) C1(3) C2(3) C3(3); 
    
DEFINE: 
           IF (sex eq 0) THEN female = 0; 
           IF (sex eq 1) THEN female = 1; 
 
           IF (ethnic eq 2) THEN afam = 1; 
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           IF (ethnic ne 2) THEN afam = 0; 
           IF (ethnic eq 3) THEN latino = 1; 
           IF (ethnic ne 3) THEN latino = 0; 
           IF (ethnic eq 4) THEN asian = 1; 
           IF (ethnic ne 4) THEN asian = 0; 
           IF (ethnic eq 5) THEN multi = 1; 
           IF (ethnic eq 6) THEN multi = 1; 
           
ANALYSIS:  
     TYPE = mixture missing complex; 
     STARTS = 225 50; 
     PROCESS = 2; 
     
MODEL: 
          %overall% 
          !c is the mover-stayer latent variable 
          !c#1 is the mover class 
          !c#2 is the stayer class 
 
          !c1, c2, c3 are the time-specific victimization classes 
           
  ! Relating c1, c2, c3 to c:  (Movers) 
          [C1#1]; 
          [C1#2]; 
          [C2#1]; 
          [C2#2]; 
          C1#1 on C#1; 
          C1#2 on C#1; 
          C2#1 on C#1; 
          C2#2 on C#1; 
          C3#1 on C#1;  
          C3#2 on C#1; 
     
  ! Relating c2 and c3 to c:  (Stayers) 
          [C2#1@-15];  !"a1" - probability of transitioning from VI 
                                  ! at grade 6 to SV at grade 7 is fixed 
                                  ! at zero for the stayer class   

[C2#2@-15];    ! These statements are fixing cells of transition matrix for stayers 
           [C3#1@-15];     
           [C3#2@-15]; 
           
           C1#1 C1#2 on female schsafe6 depress6 socanx6; 
           C2#1 C2#2 on female schsafe7 depress7 socanx7; 
           C3#1 C3#2 on female schsafe8 depress8 socanx8; 
    ! the above statements regresses the time specific victim classes on the four covariates  
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              C#1 on female afam latino asian multi;  
     ! the above statement regresses the mover/stayer variable on gender and ethnicity 
 
MODEL C: 
  %C#1%            !mover class 
     C2#1 on C1#1;         !"b11" – mover class transition prob’s are freely estimated 
     C2#1 on C1#2;       !b12 
     C2#2 on C1#1;        !b21 
     C2#2 on C1#2;         !b22 
 
     C3#1 on C2#1;       !"b11" - !mover class transition prob’s are freely estimated 
     C3#1 on C2#2;   !b12 
     C3#2 on C2#1;   !b21 
     C3#2 on C2#2;    !b22         
 
 %C#2%             !stayer class  
     C2#1 on C1#1@30;        !"b11" - stayer class has prob 1 of staying 
     C2#1 on C1#2@-45;      !b12 
     C2#2 on C1#1@-45;      !b21 
     C2#2 on C1#2@30;        !b22 
 
     C3#1 on C2#1@30;      !"b11" - stayer class has prob 1 of staying 
     C3#1 on C2#2@-45;  !b12 
     C3#2 on C2#1@-45;  !b21 
     C3#2 on C2#2@30;  !b22            
           
MODEL C.C1:            
    %C#1.C1#1%      !c#1.c1#1 are the movers who are VI in Grade 6 
       [vict1s6$1- vict6s6$1]  (1-6); 
        
   %C#1.C1#2%                !c#1.c1#2 are the movers who are SV in Grade 6 
        [vict1s6$1- vict6s6$1]  (7-12); 
         
   %C#1.C1#3%     !c#1.c1#3 are the movers who are NV in Grade 6         
       [vict1s6$1- vict6s6$1]  (13-18); 
         
   %C#2.C1#1%              !c#2.c1#1 are the stayers who are VI in Grade 6 
       [vict1s6$1- vict6s6$1]  (1-6); 
           [physsx9] (p3);               ! Estimating a mean for the VI stayers 
   %C#2.C1#2%             
        [vict1s6$1- vict6s6$1]  (7-12);      !c#2.c1#2 are the stayers who are SV in Grade 6 
            [physsx9] (p6);   ! Estimating a mean for the SV stayers 
   %C#2.C1#3%             
       [vict1s6$1- vict6s6$1]  (13-18);      !c#2.c1#3 are the stayers who are in NV in Grade 6 
            [physsx9] (p9);    ! Estimating a mean for the NV stayers 



 159 

   
MODEL C.C2: 
    %C#1.C2#1%    !c#1.c2#1 are the movers who are in VI in Grade 7 
        [vict1s7$1- vict6s7$1]  (1-6); 
         
    %C#1.C2#2% 
        [vict1s7$1- vict6s7$1]  (7-12);       !c#1.c2#2 are the movers who are in SV in Grade 7 
    
    %C#1.C2#3% 
        [vict1s7$1- vict6s7$1]  (13-18);     !c#1.c2#3 are movers who are in NV in Grade 7 
        
    %C#2.C2#1% 
        [vict1s7$1- vict6s7$1]  (1-6); 
 
    %C#2.C2#2% 
        [vict1s7$1- vict6s7$1]  (7-12); 
    
    %C#2.C2#3% 
        [vict1s7$1- vict6s7$1]  (13-18); 
 
MODEL C.C3:             
      %C#1.C3#1%             
         [vict1s8$1- vict6s8$1]  (1-6); 
         
      %C#1.C3#2%             
           [vict1s8$1- vict6s8$1]  (7-12); 
               
      %C#1.C3#3%             
          [vict1s8$1- vict6s8$1]  (13-18); 
              
      %C#2.C3#1%             
         [vict1s8$1- vict6s8$1]  (1-6); 
       
       %C#2.C3#2%              
           [vict1s8$1- vict6s8$1]  (7-12); 
       
       %C#2.C3#3%             
          [vict1s8$1- vict6s8$1]  (13-18); 
 
MODEL TEST:     

p3 = p6;   
 
SAVEDATA:  
     FILE is ltamodel.dat; 
     SAVE = cprobabilities; 
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Appendix I: Mplus Syntax for Second-Order LTA Model with Covariates and a Distal 
Outcome that Varies for Each Class of C3 

TITLE: LTA model 2nd-order effect, covariates, and distal outcome. 
    
DATA:  
     FILE is longitdataset.dat; 
 
VARIABLE:  
NAMES ARE id school sex ethnic 
    schsafe6 socanx6 depress6 
     schsafe7 socanx7 depress7  
     schsafe8 socanx8 depress8 
     vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6  
     vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7  
     vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8   
     physym9 hsworry9; 
 
IDVARIABLE = id; 
MISSING are all(9999); 
CATEGORICAL = vict1s6 vict2s6 vict3s6 vict4s6 vict5s6 vict6s6 
                  vict1s7 vict2s7 vict3s7 vict4s7 vict5s7 vict6s7 
                  vict1s8 vict2s8 vict3s8 vict4s8 vict5s8 vict6s8; 
CLASSES  = C1(3)  C2(3)  C3(3); 
CLUSTER = school; 
ANALYSIS: Type = mixture missing complex; 
     STARTS =  250 50; 
     PROCESS = 2; 
   
DEFINE:     
         If (sex01 eq 0) THEN female = 0; 
         If (sex01 eq 1) THEN female = 1;   
  
 MODEL: 
%Overall% 
  C2#1 on C1#1;   ! Time 2 on Time 1 (first-order effect) 
  C2#1 on C1#2; 
  C2#2 on C1#1; 
  C2#2 on C1#2; 
     
  C3#1 on C2#1;  ! Time 3 on Time 2 (first-order effect) 
  C3#1 on C2#2; 
  C3#2 on C2#1; 
  C3#2 on C2#2; 
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  C3#1 on C1#1;  ! Time 3 on Time 1 (second-order effect)  
  C3#1 on C1#2; 
  C3#2 on C1#1; 
  C3#2 on C1#2; 
 
MODEL C1:          
   
  C1#1 C1#2 on schsafe6 socanx6 depress6 female; 
  C2#1 C2#2 on schsafe7 socanx7 depress7 female; 
  C3#1 C3#2 on schsafe8 socanx8 depress8 female; 
 
MODEL C1: 
  %C1#1%             
    [vict1s6$1- vict6s6$1]  (1-6); 
  %C1#2%             
    [vict1s6$1- vict6s6$1]  (7-12); 
  %C1#3%             
    [vict1s6$1- vict6s6$1]  (13-18); 
 
MODEL C2:            
  %C2#1%             
    [vict1s7$1- vict6s7$1]  (1-6); 
  %C2#2%             
    [vict1s7$1- vict6s7$1]  (7-12); 
  %C2#3%             
    [vict1s7$1- vict6s7$1]  (13-18); 
 
MODEL C3:            
  %C3#1%             
    [vict1s8$1- vict6s8$1]  (1-6); 
    [physym9 ];     ! Estimating the distal outcome  mean for each class of c3. 
  %C3#2%             
    [vict1s8$1- vict6s8$1]  (7-12); 
    [physym9 ];    ! Estimating the distal outcome mean for each class of c3. 
  %C3#3%             
    [vict1s8$1- vict6s8$1]  (13-18); 
    [physym9 ];    ! Estimating the distal outcome mean for each class of c3. 
 
SAVEDATA:  
     FILE is ltasecondorderphysical.dat; 
     SAVE = cprob; 
  
OUTPUT:  

TECH1 TECH10; 
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